Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Genomics/Proteomics>

Neurobiologie: Hungerbremse mit Nebenwirkungen

NeurobiologieHungerbremse mit Nebenwirkungen

Neurogenetiker der Universität Würzburg haben bei der Taufliege ein Peptid entdeckt, das einen starken Einfluss auf das Fress- und Schlafverhalten ausübt. Gleichzeitig steht es mit der Inneren Uhr der Insekten in Verbindung.

Allatostatin A-herstellende Zellen im Gehirn und Mitteldarm der Taufliege (magenta) und genetische Markierung (grün). (Foto: AG Wegener)

Mittags eine Mahlzeit und danach ein Nickerchen und in aller Ruhe verdauen. Das klingt nach einem guten Konzept. Weniger sinnvoll wäre es hingegen, wenn die gleiche Müdigkeit bereits nach dem Frühstück für das erste Tief des Tages sorgen würde. Wissenschaftler der Universität Würzburg haben jetzt ein Peptid identifiziert, das in dem komplexen Wechselspiel aus Hunger, Schlaf und Verdauung eine zentrale Position einnehmen könnte – bei der Taufliege. Von den Rezeptoren, auf die diese Peptide einwirken, gibt es beim Menschen enge Verwandte.

Forschung an gentechnisch modifizierten Taufliegen

Allatostatin A lautet der wissenschaftliche Name des Peptids. „Wir wussten bereits, dass Allatostatin sowohl von Zellen im Gehirn als auch von Zellen im Darm der Taufliege produziert wird. Unbekannt war allerdings, was sie dort bewirken“, schildert Professor Christian Wegener den Ausgangspunkt der neuen von der Deutschen Forschungsgemeinschaft geförderten Studie. Wegener ist Neurogenetiker am Lehrstuhl für Neurobiologie und Genetik der Universität Würzburg. Gemeinsam mit seinem Doktoranden Jiangtian Chen hat er untersucht, welchen Einfluss das Peptid auf das Verhalten der Fliegen hat.

Anzeige
Weitere Beiträge zuNeurobiologieNeuronenPeptide

Für ihre Untersuchungen haben die Wissenschaftler gentechnisch modifizierte Taufliegen herangezogen. Bei ihnen war zum einen die Zahl der Allatostatin-produzierenden Zellen im Gehirn auf nur noch sechs Neurone reduziert. Zum anderen waren diese Zellen mit einer Art temperaturgesteuertem molekularen „Schalter“ versehen. Durch eine Umgebungstemperatur oberhalb 29 Grad Celsius konnte so das Allatostatin-Signal „angeschaltet werden, während es bei niedrigeren Temperaturen quasi „abgeschaltet“ vorliegt.

Die Ergebnisse der Studie

Die Ergebnisse der Untersuchungen fielen überraschend eindeutig aus: Schütteten die Zellen Allatostatin aus, nahmen die Taufliegen deutlich weniger Nahrung zu sich als Exemplare aus der Kontrollgruppe. Gleichzeitig bewegten sie sich sehr viel weniger – verglichen mit nicht manipulierten Tieren. Die Gründe dafür waren anfangs nicht klar: „Man sieht den Tieren ja nicht an, ob ihnen die Energie zum Laufen fehlt, weil sie nichts essen, oder ob sie sich aus anderen Gründen nicht bewegen können. Es ist auch nicht klar, ob sie unter Hunger leiden oder ob sie einfach nicht so viel brauchen, weil sie so wenig Aktivität zeigen“, schildert Professor Wegener das Dilemma.

Weitere Experimente waren also nötig, um Antworten auf diese Fragen zu finden. Dabei zeigte sich: Unter Hunger leiden Taufliegen mit einer erhöhten Allatostatinproduktion anscheinend nicht. Drosselten die Wissenschaftler die Umgebungstemperatur wieder unter Werte von 29 Grad – und senkten damit die Peptidproduktion wieder auf Normalmaß – nahmen die Tiere nicht mehr Nahrung zu sich als die Kontrollgruppe. „Nachholbedarf“ hatten sie demnach nicht. Auch ihr Bewegungsapparat funktionierte normal – weder in der Laufgeschwindigkeit, noch wenn es darum ging, in einem Röhrchen nach oben zu krabbeln, ließen sich Unterschiede zu anderen Taufliegen erkennen.

Eine deutliche Abweichung im Bewegungsmuster zeigte sich allerdings doch: Taufliegen, die auf einer Art „Rüttelplatte“ kurzzeitig leicht durchgeschüttelt werden, reagieren normalerweise mit einer deutlich erhöhten Laufaktivität. Tiere mit einem hohen Allatostatinspiegel wichen davon nicht ab – allerdings nur am Morgen. Mittags und am Abend hingegen ließen sie sich nicht erschüttern und verharrten ruhig an ihrem Platz. Dieser Befund brachte die Forscher auf die richtige Spur: „Wenn die Taufliegen sich so wenig bewegen, könnte es ja sein, dass sie schlafen“, sagt Wegener. Und tatsächlich: Taufliegen, die vermehrt Allatostatin A produzieren schlafen von den 1.440 Minuten, die der Tag hat, rund 1.400.

Überraschende Verbindung zur Inneren Uhr

Eigentlich wäre die Arbeit von Christian Wegener und Jiangtian Chen an diesem Punkt beendet gewesen. Wäre da nicht die Zusammenarbeit mit Professor Charlotte Förster, Inhaberin des Lehrstuhls für Neurobiologie und Genetik, im Sonderforschungsbereich 1047 „Insect timing“. Die Expertin auf dem Gebiet der Inneren Uhren bemerkte, dass die sechs Allatostatin produzierenden Neurone im Gehirn der Taufliegen in direkter Nachbarschaft zu deren Uhren-Neuronen liegen. Ihrer Anregung, diesen Aspekt genauer zu untersuchen, sind die beiden nachgegangen.

Das Ergebnis: Die Allatostatin-Neurone überlappen genau mit den Uhr-Neuronen und tragen Rezeptoren für das Neuropeptid PDF, das von den Uhr-Neuronen ausgeschüttet wird. Allerdings fällt der Einfluss der Inneren Uhr an diesem Punkt vergleichsweise gering aus. „Mit aktiviertem PDF-Rezeptor schlafen Taufliegen morgens und abends geringfügig länger. Das ist allerdings schon die einzige Veränderung, die wir nachweisen konnten“, sagt Christian Wegener. Etwas anderes hätte die Forscher auch überrascht: „Es gibt viele Peptide, die Schlaf und Freßverhalten steuern.“ Bei dem jetzt entdeckten Mechanismus könne es sich also nicht um einen Haupt-, sondern nur um einen Zusatzweg der Schlafsteuerung handeln, der Schlafen mit dem Freßverhalten verbindet.

Ähnlichkeiten mit einem Rezeptor des Menschen

Interessant aus Sicht der Wissenschaft auch ein weiterer Aspekt: Die Zellen von Wirbeltieren – und damit auch von Menschen – produzieren kein Allatostatin. Zu dem Rezeptor, auf den das Peptid einwirkt, existiert allerdings sehr wohl ein vergleichbares Gegenstück: der Galaninrezeptor. „Er steuert Schlaf, Fressverhalten und die Darmperistaltik und stellt damit auf die Verdauungsphase ein“, sagt Wegener. Nicht bekannt sei jedoch, ob der Galaninrezeptor ebenfalls mit der Inneren Uhr in Verbindung steht. Um diese Frage zu klären, seien weitere Studien notwendig.

Christian Wegener und sein Team wollen sich in Zukunft intensiver um die Larven der Taufliege kümmern. Denn die fressen ständig und schlafen nie. Außerdem könne man bei ihnen – anders als bei der Fliege – die Allatostatin-produzierenden Zellen gezielt im Darm oder im Gehirn ausschalten.

Originalveröffentlichung:

Anzeige

Weitere Beiträge zum Thema

Wüstenameise auf der Laufkugelapparatur. (Foto: Matthias Wittlinger)

NavigationsforschungAmeisen im „Hamsterrad“

Die in ausgetrockneten Salzseen lebenden Wüstenameisen sind Modelltiere für Navigationsforschung: Sie können sich auf Futtersuche in ihrer flachen, kargen und lebensfeindlichen Umgebung so orientieren, dass sie jederzeit zum Nest zurückfinden.

…mehr
Der israelisch-amerikanische Wissenschaftler Gilad Evrony, M.D., Ph.D., hat für seine Forschungsarbeit zur Entwicklung von Technologien für die Sequenzierung und Analyse des Erbguts einzelner menschlicher Gehirnzellen den Eppendorf & Science Prize for Neurobiology gewonnen.

NeurobiologieEppendorf & Science Prize 2016

Der israelisch-amerikanische Wissenschaftler Gilad Evrony, M.D., Ph.D., hat für seine Forschungsarbeit zur Entwicklung von Technologien für die Sequenzierung und Analyse des Erbguts einzelner menschlicher Gehirnzellen den Eppendorf & Science Prize for Neurobiology gewonnen.

…mehr
Transplantierte Nervenzellen

NeurobiologieNeue Nervenzellen fürs Gehirn

Verliert unser Gehirn Nervenzellen, kann es diesen Verlust selbst kaum kompensieren. Wissenschaftler und Ärzte hoffen daher, mit transplantierten Nervenzellen Schäden durch Verletzungen oder Krankheiten auszugleichen.

…mehr
Neurobiologie: Nervenzellen bündeln ihre Synapsen

NeurobiologieNervenzellen bündeln ihre Synapsen

Die Großhirnrinde ähnelt einer riesigen Telefonzentrale. Über unzählige Leitungen werden hier zum Beispiel aus den Signalen der Sinnesorganen Informationen über die Umwelt gewonnen. Um die Datenflut in sinnvolle Bahnen zu lenken, agieren die einzelnen Pyramidenzellen der Großhirnrinde wie winzige Telefonistinnen.

…mehr
Flimmerhärchen: Strömungskarte im dritten Ventrikel des Maushirns mit den Strömen entlang der Ventrikelwand (farbige Linien) und den Hauptstromrichtungen (weiße Pfeile) in einzelnen Bereichen. Strömungskarte im dritten Ventrikel des Maushirns mit den Strömen entlang der Ventrikelwand (farbige Linien) und den Hauptstromrichtungen (weiße Pfeile) in einzelnen Bereichen.

NeurobiologieFlimmerhärchen im Gehirn erzeugen Ströme

Wenn wir uns den Kopf anstoßen, geht das meist harmlos aus. Dies verdanken wir den mit Flüssigkeit gefüllten Hirnkammern in unserem Gehirn. Sie fangen Stöße oder Erschütterungen auf und polstern empfindliche Bestandteile unseres Nervensystems wirksam ab.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung