Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Genomics/Proteomics>

Nukleosomen auf der Streckbank

Molekulare Kräfte messenNukleosomen auf der Streckbank

Das Erbgutmolekül enthält den Bauplan des Lebens. Wie der Bauplan in der Zelle verpackt ist, bestimmt auch, welche Gene aktiv sind und welche stumm geschaltet werden. Gerät die Struktur durcheinander, können Krankheiten wie etwa Krebs entstehen. Münchner Wissenschaftlerinnen und Wissenschaftlern ist es gelungen, mithilfe einer aus DNA konstruierten molekularen Pinzette Interaktionen auf der ersten Verpackungsebene des Erbguts zu messen.

Die Pinzetten-Struktur besteht aus zwei starren DNA-Balken, die durch ein Gelenk verbunden sind. (Illustration: Chris Hohmann, NIM / Dietz Lab, TUM)

Zwei Meter des Moleküls Desoxyribonukleinsäure (DNA), der Trägerin unserer Erbinformation, befinden sich in jedem Kern einer menschlichen Zelle. Die DNA muss daher sorgsam verpackt werden. Sie wickelt sich dabei zunächst um bestimmte Proteine. Diese mit kleinen Spulen vergleichbaren Strukturen aus DNA und Proteinen werden als Nukleosomen bezeichnet. Die Nukleosomen sind miteinander durch Abschnitte nicht aufgewickelter DNA verbunden – unter dem Elektronenmikroskop gleicht die in Nukleosomen verpackte DNA einer Perlenkette.

Wie die Nukleosomen miteinander in Wechselwirkung stehen und welche übergeordneten Strukturen sich daraus ergeben, ist noch nicht vollständig geklärt. Ein Team von Wissenschaftlerinnen und Wissenschaftlern um Hendrik Dietz von der Technischen Universität München (TUM) und Philipp Korber von der Ludwig-Maximilians-Universität München (LMU) ist es nun gelungen, einen Beitrag zur Lösung dieses Rätsels zu leisten: Zum ersten Mal konnten sie die Anziehungskräfte direkt messen, die zwischen den Nukleosomen herrschen. Ihre Ergebnisse veröffentlichten sie in den Fachmagazinen „Science Advanced" und „Nano Letters".

Anzeige
Weitere Beiträge zuDNAZellbiologie

Nukleosomen werden in die Pinzette eingehängt

Dietz, Inhaber des Lehrstuhls Experimentelle Biophysik an der TUM, nutzt DNA als Baumaterial und konstruiert damit molekulare Strukturen; diese Technik ist unter dem Begriff DNA-Origami bekannt. Um nun die Wechselwirkungen zwischen den Nukleosomen messen zu können, entwickelten er und sein Team eine Pinzetten-Struktur, die aus zwei starren DNA-Balken besteht, die durch ein Gelenk verbunden sind. Pro Balken wurde jeweils eine Nukleosomenstruktur eingehängt. „Wir können die Position und Orientierung der Nukleosomen in den DNA-Pinzetten sehr genau einstellen", sagt Dietz. „Das ist sehr wichtig, um die Interaktionen wirklich messen zu können."

Nukleosomenstrukturen zu entwickeln, die sich in die Pinzette einhängen lassen, war die Herausforderung, der sich die Forscher an der LMU stellten. „Normalerweise gibt es beim Nukleosom zwei recht nah beieinanderliegende Enden des aufgerollten DNA-Doppelstrangs", erklärt Korber. „Aber was wir brauchten, waren zwei herausstehende Einzelstränge mehr in der Mitte. Das war nicht trivial, da dies die Struktur destabilisieren kann. Corinna Lieleg aus unserem Team ist es aber gelungen, die richtigen Stellen für diese Griffe zu finden."

Die Forscher konnten so eine sehr schwache Interaktion der Nukleosomen messen, die bei 1,6 kcal/mol mit einer Reichweite von etwa 6 nm liegt. Die Orientierungen der Nukleosomen zueinander hatten kaum Einfluss auf die Interaktion. Allerdings schwächten bestimmte chemische Veränderungen der Nukleosomen die Wechselwirkungen weiter.

Gibt es die 30-nm-Faser wirklich?

Das Ergebnis könnte dazu beitragen, einen aktuellen Disput in der Wissenschaft zu klären. Die bisher gängige Theorie besagt, dass die Nukleosomen gemeinsam mit weiteren Proteinen eine Art Superspirale mit einem Durchmesser von 30 nm bilden, die sogenannte 30-nm-Faser. Diese nächsthöhere Strukturebene konnte aber noch nie in der lebenden Zelle beobachtet werden.

Ob die DNA-Verpackung, das Chromatin, dort wirklich eine solche Superspirale annimmt, ist momentan sehr umstritten. Die geringen Kräfte zwischen den Nukleosomen, die die Forscher nun gemessen haben, sprechen eher gegen die gängige Theorie. „Unsere Daten deuten auf sehr weiche, leicht durch äußere Einflüsse deformierbare Strukturen", sagt Dietz. „Wir können die aktuelle Diskussion mit unserer Arbeit zwar nicht abschließend klären, aber doch wichtige Hinweise hinzufügen und auch ein paar Modelle ausschließen."

Die Frage, wie die Überstruktur der Nukleosomen aussieht, ist von fundamentaler Bedeutung. Nur die Gene, die in einer relativ wenig kompakten Chromatinstruktur liegen, sind „aktiv", was bedeutet, dass die dort codierten Proteine wirklich in der zelleigenen Fabrik produziert werden.

In Krebszellen gerät der Ableseprozess durcheinander

„In den vergangenen zehn Jahren ist immer deutlicher geworden, dass viele Veränderungen und Mutationen, die dazu führen, dass Zellen zu Krebszellen werden, auf dieser Ebene stattfinden", sagt Korber. In einer Krebszelle geraten die zellulären Entscheidungen, welche Gene aktiv und welche inaktiv sind, durcheinander. Abschnitte, die nicht zugänglich sein sollten, liegen frei und umgekehrt. „Wenn aber nur die Verpackung und nicht die Gene selbst fehlerhaft ist, gibt es die therapeutische Hoffnung, dass man die Verpackung wieder ändern kann." Eine Heilung wäre sehr viel schwieriger, wenn die Gene selbst vollständig aus dem Genom gelöscht wären.

Die Forscher wollen die molekularen Pinzetten, die sie für Messungen der Kräfte zwischen Nukleosomen verwendet haben, auch zur Untersuchung anderer Strukturen einsetzen. „In der Biologie ist es immer wichtig, welche Orientierung Strukturen zueinander haben", sagt Korber. „Jetzt haben wir eine Art molekulare Streckbank, mit der wir gezielt die Orientierung der räumlichen Anordnung zueinander kontrollieren können."

In einem weiteren Versuch haben die Forscher auch die Kraft gemessen, die für das Abrollen der DNA aus dem Nukleosom nötig ist. Die Forscher konnten so zeigen, dass es mithilfe des Messsystems möglich ist, sowohl Kräfte zwischen Molekülen als auch innerhalb der Moleküle zu messen.

Publikationen:

• Funke et al.: „Uncovering the forces between nucleosomes using DNA origami", Science Advanced, DOI: 10.1126/sciadv.1600974.

• Funke et al: „Exploring Nucleosome Unwrapping Using DNA Origam"; Nano Lett., 2016, 16 (12), pp 7891–7898; DOI: 10.1021/acs.nanolett.6b04169.

Kontakt:

Prof. Hendrik Dietz
Technische Universität München
E-Mail: dietz@tum.de
bionano.physik.tu-muenchen.de

PD Dr. Philipp Korber
Ludwig-Maximilians-Universität München
Molekularbiologie
Biomedizinisches Centrum
E-Mail: pkorber@lmu.de

Anzeige

Weitere Beiträge zum Thema

Zwei Laserstrahlen halten zwei winzige Glaskügelchen fest. Zwischen den Glaskügelchen befinden sich Proteinmoleküle, die über Anker aus DNA auf der Oberfläche sind. Zieht man die Glaskügelchen auseinander, so muss sich das Protein strecken. Damit kann man die Kräft messen, die einen Proteinkomplex zusammen halten. (Urheber Bild / Fotograf: Marco Grison / TUM)

Geheimnis der Muskelkraft entschlüsseltOptische Pinzette misst Proteinbindungskräfte

Unser Herz schlägt ein Leben lang. Mit jedem Schlag zieht sich der Herzmuskel zusammen und dehnt sich anschließend wieder aus. Warum das ein Leben lang funktioniert, ist in vielen Teilen immer noch ein Rätsel.

…mehr
Illustration der Basenpaar-Stapelwechselwirkungen. (Bild: Christoph Hohmann & Hendrik Dietz/ Nano Initiative Munich/ TUM)

Kräftemessen im ErbgutmolekülForscher messen erstmals direkt die Stapelkraft in DNA-Doppelhelix

Unser Erbgut, die DNA, hat vereinfacht dargestellt die Struktur einer verdrehten Strickleiter – in der Fachwelt wird diese Struktur als Doppelhelix bezeichnet. Für ihre Stabilität sind unter anderem die sogenannten Basenpaar-Stapelwechselwirkungen verantwortlich.

…mehr
Nanoklammer aus DNA-Strängen. (Grafik: Christoph Hohmann)

Gene in der ZangeMechanische Eigenschaften von Biomolekülen

Für Biologen zählen zu den wichtigsten Fragen, wie Proteine und Gene in menschlichen Zellen arbeiten, wie sie ihre Aufgaben erledigen und mit etwaigen Störungen umgehen. Von großer Bedeutung ist dabei, wie die Biomoleküle auf winzigste Krafteinwirkungen reagieren.

…mehr
Doppelsträngige DNA

Komplexe Hybridstrukturen aus DNA und...Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybridstrukturen aus DNA und Proteinen aufbauen können. 

…mehr
Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf haben durch DNA-basierte Nanodrähte Strom geleitet, indem sie sie mit Goldpartikeln besetzt haben. Das könnte die Grundlage liefern, um Schaltkreise aus dem Erbgut zu entwickeln.

Computer aus Erbgut?Vergoldete DNA-basierte Nanodrähte

Winziger als ein AIDS-Virus – das ist der Umfang des derzeit kleinsten Transistors. Bis auf 14 nm hat die Industrie die zentralen Elemente ihrer Computerchips in den letzten 60 Jahren schrumpfen lassen.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung