Labo Online - Analytic, Labortechnik, Life Sciences
Home> Analytik> Materialprüfung>

Magnetische Eigenschaften eines Bauelements optisch steuern

3D-LaserlithographieLöschbare Tinte für den 3D-Druck

Lasergeschriebene dreidimensionale Mikrostrukturen lassen sich nun schreiben, auflösen und neu schreiben. (Bild: KIT)

Im 3D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. 

…mehr

Spintronik-BauelementWenn Spinwellen auf Licht reagieren

Physiker der Technischen Universität Kaiserslautern haben ein wichtiges Verfahren für die Computer der Zukunft vorgestellt. Einem Team um die Professoren Burkard Hillebrands und Georg von Freymann ist es erstmals gelungen, die magnetischen Eigenschaften eines Bauelements optisch zu steuern.

Spintronik-Bauelement

Trotz aller technischen Entwicklungsfortschritte werden irgendwann die heutigen Computer an ihre Grenzen stoßen, was Größe und Schnelligkeit betrifft. Ihre Bauelemente lassen sich bald nicht mehr weiter verkleinern, ihr Energieverbrauch und damit ihre Erwärmung wird zu hoch. Dennoch steigen auch in Zukunft die Ansprüche der Nutzer an die elektronische Datenverarbeitung immer weiter: Informationen sollen noch schneller verschickt und auf noch engerem Raum gespeichert werden, und die Technik dazu soll möglichst wenig Energie benötigen.

Um diese Probleme zu lösen, wird man in künftigen Computern nicht mehr wie heute ausschließlich Elektronen verwenden, die hin- und her fließen, um damit zu rechnen und Daten zu speichern, sondern auch nicht-materielle Phänomene, etwa optische oder magnetische Erscheinungen, einbeziehen. In den Labors der Grundlagenforscher, etwa am Landesforschungszentrum OPTIMAS in Kaiserslautern, wird bereits heute intensiv daran gearbeitet, die Bauelemente dafür zu entwickeln.

Anzeige
Weitere Beiträge zuSpinwellenMagnonenSpintronik

Spinwellen als Grundlage der Datenverarbeitung
„Im Fokus unserer Forschung stehen Spinwellen und Magnonen“, sagt Burkard Hillebrands, Professor an der Technischen Universität Kaiserslautern und gleichzeitig Mitglied bei OPTIMAS. „Dabei handelt es sich um magnetische Phänomene, die durch den Spin, also den Eigendrehimpuls der Elektronen, verursacht werden. Mit ihnen beschäftigt sich ein junges Forschungsgebiet, die Magnon-Spintronik.“

Das rasch wachsende Gebiet befasst sich mit der Erzeugung, Manipulation und Messung von Spinwellen und Magnonen. Bei Spinwellen handelt es sich um eine Auslenkung des Spins einzelner Teilchen in einem magnetischen Ordnungszustand, die sich ähnlich wie Schallwellen durch den Festkörper fortpflanzt. Wie bei allen Wellen kann man auch den Spinwellen formal ein Quantenteilchen zuordnen. Hier wird es Magnon genannt.

Ein großer Erfolg gelang nun einem Wissenschaftlerteam rund um die Professoren Burkard Hillebrands und Georg von Freymann des Fachbereichs Physik der TU Kaiserslautern. Sie konnten erstmals magnetische Strukturen eines magnonischen Kristalls* durch den Einsatz von Licht verändern. Bisher wurden diese fest in das Material eingeätzt und lagen damit ein für alle Mal fest. Mit der neuen Technik können sie aber je nach Bedarf durch Bestrahlen mit Laserlicht geändert werden. Da die Strukturen nach Beendigung der Laserbestrahlung wieder vollständig verschwinden, öffnet das Verfahren den Weg für schaltbare Leitungen, flexible Filter oder auch logische Gatter.

Lasererzeugte Hologramme auf Granat
Für ihren magnonischen Kristall benutzten die Forscher eine dünne Schicht aus Yttrium-Eisen-Granat** auf einem Substrat aus Gadolinium-Gallium-Granat. Sie bestrahlten diese mit streifenförmigen Hologrammen, welche sie mit Laserlicht erzeugten. „An den bestrahlten Stellen erwärmt sich das Material und verändert blitzschnell die magnetische Landschaft in der Schicht“, erklärt der Optikspezialist Professor Georg von Freymann. „Auf diese Weise könnte man später in dem Bauelement eines Computers die Spinwellen manipulieren. Der große Vorteil dabei ist, dass wir so beliebige Strukturen erzeugen können, zwischen denen man umschalten kann.“

Die magnonen-basierte Datenverarbeitung hätte große Vorteile: Sie erzeugt keine Wärme, und es sind wesentlich weniger Bauelemente pro Rechenoperation nötig als beim herkömmlichen Rechnen mit Elektronen in Halbleitern. Sie lässt sich zudem kombinieren mit elektronischen Teilen des Computers; für diesen Übergang zwischen Elektronik und Magnonik und zurück entwickeln die Forscher gerade die nötigen Bauelemente.

Das neue Verfahren stellt einen wichtigen Entwicklungsschritt zu den bereits vorgestellten magnonischen Transistoren dar. Auf der CeBIT 2015 hatten die Kaiserslauterner Forscher kürzlich dieses zentrale Bauelement präsentiert. Ihr nächstes Ziel ist es, weitere Bauelemente für die Datenverarbeitung zu entwickeln und sie zu miniaturisieren. Denn „so wie einst der erste elektronische Transistor noch zentimetergroß war und heute nur noch Nanometer einnimmt, werden auch magnonische Bauelemente immer kleiner werden“, prophezeit Hillebrands.

Weitere Informationen
*Magnonische Kristalle sind Wellenleiterstrukturen, die eine periodische Variation ihrer Materialeigenschaften aufweisen. Sie gehören zur Klasse der sogenannten Metamaterialien: künstliche Materialien mit Eigenschaften, die von einer gezielt entworfenen Struktur erzeugt werden. Solche Kristalle können beispielsweise Magnonen einfangen, Spinwellen an der Ausbreitung in bestimmte Richtungen hindern oder sie in vorgegebene Richtungen lenken.

**Granat ist eine besondere Kristallform, die für magnetische Zwecke gut geeignet ist und auch als Schmuckstein vorkommt. An ihren Gitterplätzen können unterschiedliche Atome sitzen.

Original-Publikation:
Marc Vogel, Andrii V. Chumak, Erik H. Waller, Thomas Langner, Vitaliy I. Vasyuchka, Burkard Hillebrands, Georg von Freymann (2015) Optically-Reconfigurable Magnetic Materials, Nature Phys., 2015, online publication doi: 10.1038/nphys3325.

Fachliche Ansprechpartner:
Prof. Dr. Burkard Hillebrands
Fachbereich Physik
Technische Universität Kaiserslautern
hilleb@physik.uni-kl.de
www.physik.uni-kl.de/hillebrands

Prof. Dr. Georg von Freymann
Fachbereich Physik
Technische Universität Kaiserslautern
georg.freymann@physik.uni-kl.de
www.physik.uni-kl.de/freymann

Anzeige

Weitere Beiträge zum Thema

magnetische Signale

MagnetismusEigenschaften von Magnetmaterialien gezielt ändern

Magnete sind nicht überall gleich magnetisch, sondern zerfallen automatisch in kleinere Bereiche, sogenannte magnetische Domänen. Von besonderer Bedeutung sind die Wände zwischen den Domänen.

…mehr
Spin-Seebeck-Effekt: Forscherteam deckt grundlegende Eigenschaften auf

Spin-Seebeck-EffektForscherteam deckt grundlegende Eigenschaften auf

Thermoelektrische Effekte sind ein wesentlicher Baustein für die Konzeption und Weiterentwicklung neuartiger Prozesse zur Informationsverarbeitung.

…mehr
Zentrum eines magnetischen Wirbels

Für die Datenverarbeitung von morgenErstmals kurzwellige Spinwellen direkt erzeugt

Im Zuge der rasant fortschreitenden Miniaturisierung steht die Datenverarbeitung mit Hilfe elektrischer Ströme vor zum Teil unlösbaren Herausforderungen. Eine Alternative für noch kompakteren Chips sind magnetische Spinwellen.

…mehr
Spinstromfluss

SpintronikUltraschnelle Kontrolle von Spinströmen durch Laserlicht

Ein internationales Team mit der Beteiligung Jülicher Wissenschaftler hat einen neuen Effekt entdeckt, mit dem sich Spinströme kontrolliert erzeugen und steuern lassen.

…mehr
Magnon

Neue Erkenntnisse über magnetische SpinwellenSpinströme aus Abwärme

Einem internationalen Forscherteam ist es gelungen, neue Erkenntnisse über magnetische Spinwellen zu erhalten. Die Spinwellen können in elektrisch nichtleitenden Materialien durch ein Temperaturgefälle entstehen.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung