Labo Online - Analytic, Labortechnik, Life Sciences
Home> Analytik> Materialprüfung>

Mikroprozessor aus nur drei Atomschichten

3D-LaserlithographieLöschbare Tinte für den 3D-Druck

Lasergeschriebene dreidimensionale Mikrostrukturen lassen sich nun schreiben, auflösen und neu schreiben. (Bild: KIT)

Im 3D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. 

…mehr

Flexible Elektronik aus 2D-MaterialMikroprozessor aus nur drei Atomschichten

Mikroprozessoren auf Basis von atomar dünnem Material versprechen, neben der Weiterentwicklung klassischer Prozessoren, auch neue Anwendungen im Bereich von flexibler Elektronik. Einem Forschungsteam der TU Wien rund um Thomas Müller gelang in einem aktuellen Forschungsprojekt nun ein Durchbruch auf diesem Gebiet.

Photonik-Forscher

Zweidimensionale Materialien –  kurz 2D-Materialien – sind sehr vielseitig einsetzbar obwohl – oder oft gerade weil – sie aus nur einer einzigen oder wenigen Schichten von Atomen bestehen. Das wohl bekannteste 2D-Material ist Graphen.  Molybdändisulfid (eine drei-atomar dicke Schicht aus Molybdän und Schwefel-Atomen) gehört ebenfalls in diese Kategorie, besitzt im Gegensatz zu Graphen jedoch Halbleitereigenschaften. Dr. Thomas Müller vom Institut für Photonik der TU Wien forscht mit seinem Team an 2D-Materialien und sieht diese als zukunftsträchtige Alternative für die Herstellung von Mikroprozessoren und anderen integrierten Schaltkreisen.

Das Ganze und die Summe seiner Teile
Mikroprozessoren sind aus einer modernen Welt nicht mehr wegzudenken und allgegenwärtig. Ohne ihre ständige Weiterentwicklung wären viele inzwischen alltäglich erscheinende Dinge (Computer, Mobiltelefone, Internet, ...)  nicht realisierbar. Silicium, das von Beginn an für ihre Herstellung verwendet wird, stößt jedoch langsam aber sicher an seine physikalischen Grenzen.

Anzeige

Ein vielversprechender Kandidat für seine Ablöse findet sich in 2D-Materialien, unter anderem Molybdändisulfid. Während einzelne Transistoren, die grundlegendsten Bauteile jeder digitalen Schaltung, aus 2D-Materialien schon seit der Entdeckung von Graphen 2004 erforscht werden, konnten komplexere Strukturen nur äußerst beschränkt realisiert werden. Bisher gelang lediglich die Herstellung einzelner digitaler Bauelemente aus einigen wenigen Transistoren. Für einen eigenständig funktionierenden Mikroprozessor benötigt man jedoch erheblich komplexere Schaltkreise und vor allem auch deren perfektes Zusammenwirken.

Mikrochip

Thomas Müller und sein Team haben es nun erstmalig geschafft dies zu realisieren. Das Resultat ist ein 1-bit Mikroprozessor, bestehend aus 115 Transistoren auf einer Fläche von rund 0,6 mm², der einfache Programme ausführen kann. „Während das im Vergleich mit Industriestandards auf Basis von Silicium natürlich äußerst bescheiden wirkt, ist es doch ein großer Durchbruch für dieses Forschungsfeld. Der 'Proof of Concept' ist geschafft, einer Weiterentwicklung steht im Prinzip nichts im Weg“, so Stefan Wachter, Dissertant in der Forschungsgruppe von Dr. Müller. Doch nicht nur die Materialwahl war für den Erfolg des Forschungsprojektes ausschlaggebend. „Wir haben uns auch die Dimensionierung der einzelnen Transistoren genau überlegt“, erklärt Müller. „Die exakten Verhältnisse der Transistorgeometrien in einem grundlegenden Schaltungsbauteil sind kritisch für die Realisier- und Kaskadierbarkeit komplexerer Einheiten.“

Zukunftsaussichten
Natürlich braucht es für einen praktischen Einsatz dieser Technologien noch deutlich leistungsfähigere und komplexere Schaltkreise mit tausenden oder gar Millionen von Transistoren. Eine der größten Herausforderungen in diesem Forschungsfeld ist derzeit noch die Reproduzierbarkeit und Ausbeute bei der Herstellung der verwendeten Transistoren, denn sowohl die eigentliche Herstellung der 2D-Materialien als auch die Methoden für deren Weiterverarbeitung stecken noch in den Kinderschuhen.

„Da unsere Schaltkreise im Labor quasi in 'Handarbeit' gefertigt werden, sind derartig komplexe Designs natürlich für uns kaum realisierbar, da jeder einzelne der Transistoren wie geplant arbeiten muss, um die Funktion des gesamten Prozessors zu gewährleisten“, betont Müller die immensen Anforderungen an moderne Elektronik. Mit industriellen Methoden könnten jedoch in den nächsten Jahren durchaus einige neue Anwendungsgebiete für diese Technologie entstehen, sind die Forscher überzeugt. Ein Beispiel für ein solches wäre flexible Elektronik, wie sie für medizinische Sensoren oder biegsame Displays benötigt wird. Hier sind die 2D-Materialien dem klassischen Silicium aufgrund ihrer deutlich größeren mechanischen Flexibilität weit überlegen.

Originalpublikation:
Stefan Wachter, Dmitry K. Polyushkin, Ole Bethge, Thomas Mueller, A microprocessor based on a two-dimensional semiconductor. Nature Communications. DOI: 10.1038/NCOMMS14948.

Rückfragehinweis:
Dr. Thomas Müller
Technische Universität Wien
Institut für Photonik
E-Mail: thomas.mueller@tuwien.ac.at
http://graphenelabs.at

Anzeige

Weitere Beiträge zum Thema

Marburger Arbeitsgruppe Experimentelle Halbleiterphysik

Hauchdünne HalbleiterschichtenUntergrund beeinflusst Halbleiter-Monolagen

Hauchdünne Halbleiterschichten verhalten sich unterschiedlich, je nachdem, auf welchem Untergrund sie aufgebracht sind. Das hat ein Team um den Physiker Dr. Arash Rahimi-Iman von der Philipps-Universität Marburg herausgefunden.

…mehr
Aufbau eines Logikschalters

Palladiumdisulfid-SandwichNeues Material für energiesparende Transistoren

Das Streben nach verbesserten Energiebilanzen ist allgegenwärtig, auch in der Erforschung von Transistoren für den Einsatz in Computer-Prozessoren. Der Chemiker Prof. Dr. Thomas Heine hat mit seinem Team ein neues Konzept für energiesparende Transistoren entwickelt.

…mehr
Glasampulle mit SnIP-Nadeln, links Kristalle nicht umgesetzten schwarzen Phosphors und von Zinniodid (rot). Bild: Andreas Battenberg / TUM

Anorganische DoppelhelixFlexibles Halbleitermaterial für Elektronik, Solartechnologie und Photokatalyse

Die Doppelhelix hat als stabile und flexible Struktur des Erbguts das Leben auf der Erde erst möglich gemacht. Nun hat ein Team der TU München eine Doppelhelix-Struktur auch in einem anorganischen Material entdeckt. 

…mehr
Lasergeschriebene dreidimensionale Mikrostrukturen lassen sich nun schreiben, auflösen und neu schreiben. (Bild: KIT)

3D-LaserlithographieLöschbare Tinte für den 3D-Druck

Im 3D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. 

…mehr
Der Temperaturunterschied zwischen einem heißen (rot) und einem kalten (blau) Nanoteilchen führt zu einer Ausrichtung der Moleküle in der umgebenden polaren Flüssigkeit, welche wiederum eine anziehende Kraft zwischen den beiden Teilchen verursacht. (Copyright: Andela Šarić / Peter Wirnsberger / University of Cambridge)

Heiß und kalt ziehen sich anNanoteilchen werden durch Temperaturunterschiede „geladen"

Elektrisch geladene Teilchen üben starke anziehende oder abstoßende Kräfte aufeinander aus. Mit Hilfe von Computersimulationen konnten WissenschafterInnen der Universitäten Cambridge und Wien um Christoph Dellago nun nachweisen, dass selbst zwischen elektrisch neutralen Nanoteilchen ganz ähnliche Kräfte wirken, falls diese kälter oder wärmer sind als die Flüssigkeit, in der sie gelöst sind. 

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung