Labo Online - Analytic, Labortechnik, Life Sciences
Home> Analytik> Materialprüfung>

Perowskit-Solarzellen mit Nanostreifen

3D-LaserlithographieLöschbare Tinte für den 3D-Druck

Lasergeschriebene dreidimensionale Mikrostrukturen lassen sich nun schreiben, auflösen und neu schreiben. (Bild: KIT)

Im 3D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. 

…mehr

Struktur von Perowskit-SolarzellenSolarzellen mit Nanostreifen

Solarzellen aus Perowskiten erreichen inzwischen hohe Wirkungsgrade: Sie wandeln über 20 % des einfallenden Lichts direkt in nutzbaren Strom um.

Nanostrukturen in Perowskit-Solarzellen

Auf der Suche nach den zugrunde liegenden physikalischen Mechanismen haben Forscher am Karlsruher Institut für Technologie (KIT) nun in Perowskit-Schichten streifenförmige Nanostrukturen mit sich abwechselnden elektrischen Feldern nachgewiesen, die als Transportpfade für Ladungen dienen könnten. Darüber berichten sie im Journal Energy & Environmental Science.

Die von den Karlsruher Forschern verwendeten Perowskite sind metallorganische Verbindungen mit spezieller Kristallstruktur und hervorragenden photovoltaischen Eigenschaften. So haben Perowskit-Solarzellen seit ihrer Entdeckung 2009 eine rasante Entwicklung durchlaufen und erreichen inzwischen Wirkungsgrade von über 20 %. Dies macht sie zu einer der vielversprechendsten Photovoltaik-Technologien.

Die Forschung an Perowskit-Solarzellen steht allerdings noch vor zwei Herausforderungen: Die lichtabsorbierenden Schichten robuster gegen Umwelteinflüsse zu machen sowie das darin enthaltene Schwermetall Blei durch umweltfreundlichere Elemente zu ersetzen. Dazu bedarf es tieferer Einblicke in die physikalischen Mechanismen, die es ermöglichen, dass Perowskite einen so hohen Anteil der absorbierten Solarenergie in elektrische Energie umwandeln.

Anzeige

Ein multidisziplinäres Team von Forschern des KIT um Dr. Alexander Colsmann, Leiter der Arbeitsgruppe Organische Photovoltaik am Lichttechnischen Institut (LTI) und am Materialwissenschaftlichen Zentrum für Energiesysteme (MZE), hat nun Perowskit-Solarzellen mithilfe der Piezoresponse Force Microscopy, einer besonderen Rasterkraft-Mikroskopietechnik, vermessen und dabei in den lichtabsorbierenden Schichten ferroelektrische Nanostrukturen nachgewiesen.

Ferroelektrizität bedeutet, dass Kristalle eine elektrische Polarisation besitzen. Dabei bilden die ferroelektrischen Kristalle Bereiche mit gleicher Polarisationsrichtung, sogenannte Domänen. Die Karlsruher Wissenschaftler beobachteten, dass der Bleihalogenid-Perowskit während der Entstehung dünner Schichten rund 100 nm breite streifenförmige ferroelektrische Domänen mit sich abwechselnden elektrischen Feldern bildet. Diese alternierende elektrische Polarisation im Material könnte eine entscheidende Rolle beim Transport der photogenerierten Ladungen aus der Solarzelle heraus spielen und somit die besonderen Eigenschaften der Perowskite in der Photovoltaik erklären.

„Die ferroelektrischen Strukturen in der Größe von wenigen zehn Nanometern könnten nahezu perfekt getrennte Transportpfade für Ladungen in der Solarzelle bilden“, erklärt Alexander Colsmann. Nach derartigen Strukturen suchen Forscher schon seit Jahren, um den Wirkungsgrad von Solarzellen zu verbessern. „In Perowskit-Solarzellen entstehen diese Strukturen unter gewissen Bedingungen offensichtlich von selbst“, sagt Prof. Michael J. Hoffmann, Leiter des Instituts für Angewandte Materialien – Keramische Werkstoffe und Technologien (IAM-KWT) des KIT.

Er kennt ähnliche ferroelektrische Strukturen aus der Keramikforschung. Theoretische Arbeiten anderer Forscher hatten diese vorteilhaften Nanostrukturen zuvor bereits vorhergesagt. Bisher war der Nachweis jedoch ausgeblieben. Die Wissenschaftler des KIT untersuchten die Ferroelektrizität von Bleihalogenid-Perowskiten im Rahmen des von der Baden-Württemberg Stiftung finanzierten Projekts „NanoSolar“. Ihre Ergebnisse veröffentlichten sie in der renommierten Zeitschrift Energy & Environmental Science.

Publikation:
Holger Röhm, Tobias Leonhard, Michael J. Hoffmann and Alexan¬der Colsmann: Ferroelectric domains in methylammonium lead iodide perovskite thin-films. Energy & Environmental Science, 2017 (DOI: 10.1039/c7ee00420f).

Anzeige

Weitere Beiträge zum Thema

Polaron-Solarzelle

PhotovoltaikGrundlage für neuartige Solarzellen

Ein interdisziplinäres Forscherteam hat die Grundlagen für einen völlig neuen Typus von Solarzellen entwickelt. Die neue Methode wandelt jenseits der herkömmlichen Wirkmechanismen Infrarotlicht in elektrische Energie um.

…mehr
Prototypen der Tandem-Solarmodule, bestehend aus einem semitransparenten Perowskit-Solarmodul (rechts/vorne) und einem CIGS-Solarmodul (links/hinten). (Bild: imec/ZSW/KIT)

Neuer Dünnschicht-Photovoltaik-RekordPerowskit-CIGS-Tandem-Solarmodul mit Wirkungsgrad von 17,8 Prozent

Dünnschicht-Technologien könnten die Kosten für Solarmodule der nächsten Generation dramatisch senken. Ihre Herstellung ist günstig, aber insbesondere die Verbindung komplementärer Absorbermaterialien in einem Tandem-Solarmodul steigert die Wirkungsgrade.

…mehr
flexible Solarzellen

Deutsch-dänisches PhotovoltaikprojektSolarzellen zum Ausrollen

Solarzellen, dünn wie Folie und so biegsam, dass sie sich auf unterschiedlichen Oberflächen wie Haus- und Fahrzeugdächer oder Glasfronten großflächig ausrollen lassen – das ist eines der Ziele eines deutsch-dänischen Forschungsprojekts.

…mehr
Projektpartner PECSYS

EU-Projekt PECSYSSolare Wasserstofferzeugung

Das HZB koordiniert ein EU-Projekt, das innerhalb von vier Jahren eine wirtschaftlich umsetzbare Technologie für die solare Wasserstofferzeugung entwickeln soll. Die Solarenergie wird dadurch in chemische Energie umgewandelt und im Brennstoff Wasserstoff gespeichert.

…mehr
Vergleich des Aufbaus von Polymer-Fulleren und Fulleren-freien organischen Solarzellen sowie die dazugehörigen Strom-Spannungs-Kennlinien. Die neuen Akzptormoleküle (rechts) erlauben deutlich höhere Leerlaufspannungen als die traditionellen Fulleren-basierten Solarzellen. (Copyright: Forschungszentrum Jülich)

Hocheffiziente organische SolarzellenNeue Materialien für preiswerten Sonnenstrom

Zusammen mit einem internationalen Team von Wissenschaftlern haben Jülicher Photovoltaik-Forscher neuartige organische Solarzellen mit gesteigerter Energieausbeute entwickelt.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung