Labo Online - Analytic, Labortechnik, Life Sciences
Home> Analytik> Materialprüfung>

Thermoelektrische Materialien: Prof. Kanatzidis erhält Wilhelm Manchot-Professur

3D-LaserlithographieLöschbare Tinte für den 3D-Druck

Lasergeschriebene dreidimensionale Mikrostrukturen lassen sich nun schreiben, auflösen und neu schreiben. (Bild: KIT)

Im 3D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. 

…mehr

Erforschung thermoelektrischer MaterialienProf. Mercouri Kanatzidis erhält Wilhelm Manchot-Professur

Die Chemie-Fakultät der Technischen Universität München (TUM) und die Jürgen Manchot-Stiftung haben dem Chemiker Prof. Mercouri Kanatzidis die Wilhelm Manchot-Forschungsprofessur 2015 verliehen. Mit der Auszeichnung würdigt die TUM seine Weg weisenden Arbeiten zu thermoelektrischen Materialien.

Wilhelm Manchot-Forschungsprofessur

Mercouri Kanatzidis, Professor an der Northwestern University in Evanston und Leiter der Abteilung Materialwissenschaften am Argonne National Laboratory (Illinois, USA), kombiniert explorative anorganische Synthesechemie und Materialforschung. Sein besonderer Fokus liegt auf Materialien zur Energiewandlung. Neben neuen Materialien für die Photovoltaik brachten seine Untersuchungen die effektivsten heute bekannten Thermoelektrika hervor.

Thermoelektrische Materialien verwandeln Wärme in elektrische Spannung. Eine thermoelektrische Maschine benötigt nur eine möglichst hohe Temperaturdifferenz zwischen heißer und kalter Seite. Sie hat keine beweglichen Teile, produziert keine Geräusche und ist extrem zuverlässig. So zuverlässig, dass die NASA damit ihre Voyager-Sonden ausrüstete, die, 1977 gestartet, inzwischen das Sonnensystem verlassen und immer noch arbeiten.

Anzeige
Weitere Beiträge zuMaterialforschung

Über Jahrzehnte musste man sich allerdings mit schlechten Energieausbeuten zufrieden geben. Dank der Forschungsarbeiten von Prof. Kanatzidis und seinem Team erreichen die besten thermoelektrischen Materialien inzwischen Wirkungsgrade im Bereich zwischen 15 und 30 %. Derzeit gehen mehr als 60 % der eingesetzten Primärenergie als Abwärme verloren. Hochleistungs-Thermoelektrika, wie die in der Arbeitsgruppe von Kanatzidis entwickelten Zinn-Selenide, könnten einen Teil davon zurück gewinnen.

Mercouri Kanatzidis studierte in Thessaloniki Chemie und promovierte mit einer Arbeit im Bereich Bioanorganische Chemie an der Universität Iowa (USA). Als Postdoktorand forschte er an der University of Michigan in Ann Arbor und der Northwestern University in Evanston. 1987 wurde er als Assistant Professor an die Michigan State University berufen und dort 1993 zum Full Professor ernannt. 2006 wechselte er zurück an die Northwestern University und übernahm die Leitung der Abteilung Materialwissenschaften am Argonne National Laboratory. Von seiner hohen wissenschaftlichen Produktivität zeugen rund 900 Publikationen, zahlreiche Patente und etliche hohe Auszeichnungen wie der ENI Renewable Energy Prize im vorigen Jahr oder der ACS Award in Inorganic Chemistry in diesem Jahr.

Wilhelm Manchot-Forschungsprofessur
Die Jürgen Manchot-Stiftung verleiht die Wilhelm Manchot-Forschungsprofessur jährlich an herausragende Chemiker. Neben der Würdigung des wissenschaftlichen Werkes ermöglicht die Stiftung die Lehrtätigkeit des Preisträgers an der Chemie-Fakultät der TU München. Die Auszeichnung erinnert an den Chemiker Wilhelm Manchot (1869 – 1945), der von 1914 bis 1935 Professor und Direktor des Anorganisch-Chemischen Instituts der damaligen Technischen Hochschule München war. Herausragend sind auch seine Verdienste als Hochschullehrer. Er übersetzte das bis heute unter der Bezeichnung „Hollemann-Wiberg" jedem Studenten bekannte Standardwerk der Anorganischen Chemie ins Deutsche.

Anzeige

Weitere Beiträge zum Thema

Lasergeschriebene dreidimensionale Mikrostrukturen lassen sich nun schreiben, auflösen und neu schreiben. (Bild: KIT)

3D-LaserlithographieLöschbare Tinte für den 3D-Druck

Im 3D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. 

…mehr
Der Temperaturunterschied zwischen einem heißen (rot) und einem kalten (blau) Nanoteilchen führt zu einer Ausrichtung der Moleküle in der umgebenden polaren Flüssigkeit, welche wiederum eine anziehende Kraft zwischen den beiden Teilchen verursacht. (Copyright: Andela Šarić / Peter Wirnsberger / University of Cambridge)

Heiß und kalt ziehen sich anNanoteilchen werden durch Temperaturunterschiede „geladen"

Elektrisch geladene Teilchen üben starke anziehende oder abstoßende Kräfte aufeinander aus. Mit Hilfe von Computersimulationen konnten WissenschafterInnen der Universitäten Cambridge und Wien um Christoph Dellago nun nachweisen, dass selbst zwischen elektrisch neutralen Nanoteilchen ganz ähnliche Kräfte wirken, falls diese kälter oder wärmer sind als die Flüssigkeit, in der sie gelöst sind. 

…mehr
Photoemissionsmikroskop

ReRAM-SpeicherResistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

…mehr
OLED-Leuchtstoffe

Organische LeuchtdiodenMolekülbibliotheken für OLEDs

Organische Leuchtdioden (OLEDs) sind vielversprechende Kandidaten für flexible Flachbildschirme. Mit einem von Chemikern der Goethe-Universität entwickelten Screening-Verfahren lassen sich Leitstrukturen zur Optimierung der Lichtausbeute nun schneller identifizieren.

…mehr
Spallations-Neutronenquelle

20 Jahre Spallations-Neutronenquelle SINQMit Teilchen Materialien untersuchen

Ob Materialien für die Elektronik der Zukunft, Batterien oder Schwerter aus der Bronzezeit – seit 20 Jahren nutzen Forschende verschiedener Disziplinen die Spallations-Neutronenquelle SINQ des Paul Scherrer Instituts PSI für ihre Untersuchungen. 

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung