Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Mikroskopie>

Rastertunnelmikroskopie mit gepulster Laseranregung

KraftmikroskopieSauerstoff zum Ein- und Ausschalten

Kraftmikroskop an der TU Wien. (Copyright: TU Wien)

An der TU Wien ist es gelungen, einen chemisch höchst wichtigen Prozess gezielt zu steuern: Sauerstoffmoleküle können zwischen einem reaktiven und einem nicht reaktiven Zustand umgeschaltet werden.

…mehr

Hochaufgelöste MikroskopieRastertunnelmikroskopie mit gepulster Laseranregung

Heutzutage bilden optische Methoden physikalische, chemische oder biologische Prozesse auch auf ultrakurzen Zeitskalen ab. Physikern der Universität Göttingen ist es gelungen, gepulste Laseranregung mit der Rastertunnelmikroskopie zu verbinden.

Galliumarsenid

Als erste Anwendung ihres neuen Verfahrens studierten sie Ladungsprozesse an und innerhalb von Halbleiteroberflächen. So konnten sie erstmals den Einfluss von atomaren Defekten, beispielsweise isolierte Siliciumatome, im Galliumarsenid messen. Die Ergebnisse sind in der Fachzeitschrift Science Advances erschienen.

Bei der Rastertunnelmikroskopie tastet eine sehr dünne metallische Spitze eine kristalline Oberfläche ab. Dabei ist es möglich, die messende Sonde, also die Spitze des Mikroskops, genauer als ein Millionstel eines Haardurchmessers auf der Oberfläche zu positionieren. „Wird das System nun mit kurzen Laserpulsen angeregt, können anschließend die optisch ausgelösten dynamischen Prozesse auf atomarer Skala vermessen werden – auf superschnellen Zeitskalen und mit superscharfer Auflösung“, so Mitautor Philipp Kloth vom IV. Physikalischen Institut der Universität Göttingen.

Anzeige

Die untersuchten Systeme und die damit verbundenen Ladungsdynamiken spielen bereits heute eine bedeutende Rolle in der Photovoltaik oder in der Computertechnologie. „Will man in Zukunft halbleiterbasierte Bauteile noch weiter verkleinern und dadurch effizienter gestalten, sind die gewonnen Erkenntnisse essentiell wichtig“, sagt Mitautor Dr. Martin Wenderoth vom IV. Physikalischen Institut.

Weitere Beiträge zuRastertunnelmikroskopie

Die gezielte Energieumwandlung auf kleinster Skala zu kontrollieren und damit langfristig alternative Konzepte zur Lösung der Energiefrage zu entwickeln, ist ein wichtiger Forschungsschwerpunkt am Göttingen Campus. Der Sonderforschungsbereich „Kontrolle von Energiewandlung auf atomaren Skalen“, gefördert durch die Deutsche Forschungsgemeinschaft, umfasst eine Vielzahl von Forschergruppen, die mithilfe modernster Verfahren grundlegende physikalische Prozesse auf atomarer Skala verstehen und nutzbar machen wollen. Das im Forschungsprojekt von Wenderoth, Prof. Dr. Claus Ropers und Prof. Dr. Alec Wodtke entwickelte Experiment stellt hierbei einen wichtigen Baustein dar.

Originalveröffentlichung:
Philipp Kloth und Martin Wenderoth: From time-resolved atomic-scale imaging of individual donors to their cooperative dynamics, Science Advances, Doi: https://doi.org/10.1126/sciadv.1601552.

Kontakt:
Dr. Martin Wenderoth
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
E-Mail: wenderoth@ph4.physik.uni-goettingen.de
Internet: www.uni-goettingen.de/de/500611.html

Anzeige

Weitere Beiträge zum Thema

Tieftemperatur-Rasterkraftmikroskop

Van-der-Waals-WechselwirkungErstmals Van-der-Waals-Kräfte einzelner Atome vermessen

Physiker des Swiss Nanoscience Institutes und der Universität Basel ist es erstmals gelungen, die sehr schwachen Van-der-Waals-Kräfte zwischen einzelnen Atomen zu messen.

…mehr
Die elektrisch geladene Spitze eines Rastertunnelmikroskops (oben) und ein zusätzliches Magnetfeld führen zu stabilen, lokalisierten Elektronenzuständen im Graphen.

Quantenphysik„Künstliches Atom“ in Graphen-Schicht

Elektronen offenbaren ihre Quanteneigenschaften, wenn man sie in engen Bereichen gefangen hält. Ein Forschungsteam mit TU Wien-Beteiligung baut solche Elektronen-Gefängnisse in Graphen.

…mehr
Prof. Dr. Torsten Fritz (l.) und Matthias Meißner

Nachweis erstmals gelungenFlexible zweidimensionale Kristallgitter

Physiker der Friedrich-Schiller-Universität Jena haben gemeinsam mit Kollegen aus Mainz und Dresden herausgefunden, dass sich Kristallgitter organischer Moleküle flexibel auf einem kristallinen Trägersubstrat ausrichten.

…mehr
Molekulares Netz

Bienenwabenstruktur durch...Molekulares Lego mit verstecktem Bauplan

In der Natur finden sich Lego-Steine der besonderen Art: biologische Moleküle, genauer gesagt Peptide, aus denen sich vielfältige komplexe Strukturen zusammensetzen lassen.

…mehr
Die nanometergroße Spitze eines Rastertunnelmikroskops erzeugt auf kleinster Skala elektrische Felder innerhalb einer Halbleiteroberfläche. Mit Hilfe optischer Anregung oder per Ladungsinjektion durch den Tunnelstrom kann das Gleichgewicht der Feldabschirmung aktiv gestört werden.

Modellsystem auf atomarer SkalaWechselspiel zwischen elektrischer Ladung und Licht

Viele heutige elektronische Bauteile haben im Zuge ihres Miniaturisierungsprozesses eine Größe auf der atomaren Skala erreicht. Ein substantieller Faktor für eine erfolgreiche Funktionalität ist hierbei die Kontrolle elektrischer Ladungen und Felder auf kleinster Skala.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung