Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Mikroskopie>

Wie Flüssigkeiten in schwammartige Strukturen eindringen

Zeitaufgelöste Röntgen-MikrotomographieWie Flüssigkeiten in schwammartige Strukturen eindringen

Vom Tafelwischen in der Schule kennt man es: Wasser benetzt einen Schwamm und wird von diesem aufgesogen. Dabei verdrängt das eindringende Wasser die in dem Schwamm befindliche Luft nahezu vollständig.

Schwammstruktur

Ganz anders ist die Situation bei der Bewässerung trockener Böden oder bei der Ölgewinnung, bei der Wasser in ein poröses Material eindringen muss, das oft nicht gut benetzbar ist. Bei der Ölförderung muss es gar meist unter hohem Druck in einen ölhaltigen, nicht benetzenden Sandstein hineingepumpt werden, um das Öl zu verdrängen und damit zu fördern. Hierbei wird das Öl nur teilweise ausgetrieben und kann deshalb nicht vollständig gefördert werden.

Diesen Prozess wollten Forscher am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen (MPIDS), an der Universität des Saarlandes (UdS) sowie der Europäischen Synchrotron Strahlungsquelle (ESRF) in Grenoble verstehen. Dafür haben sie das Eindringen von Flüssigkeit in künstliches Gestein, bestehend aus dicht gepackten Kugeln mit unterschiedlicher Benetzbarkeit, mittels zeitaufgelöster Röntgen-Mikrotomographie untersucht und die benetzungsabhängigen Prozesse auf der Größenskala einzelner Poren entschlüsselt.

Anzeige

Komplexes Fließverhalten
Bei ihren Untersuchungen, die unter anderem von der Firma BP Inc. gefördert werden, entdeckten die Forscher, dass sich bei Packungen aus benetzenden Kugeln, ähnlich porös wie ein Schwamm, eine relativ glatte Front zwischen dem Wasser und dem Öl ausbildet. Im Falle von nicht benetzenden Kugeln hingegen ist die Front zwischen den Flüssigkeiten stark verzweigt.

Glaskugelpackung

Was für die Forscher überraschend war: Dieses komplexe Fließverhalten kann man allein durch die Betrachtung der einzelnen Poren verstehen, und an Theorie braucht man dazu nicht mehr als ein wenig Schulgeometrie. Benetzungs- und geometrieabhängig benötigt man einen Mindestdruck, damit Flüssigkeit in eine bestimmte Pore eindringen kann. Für gut benetzende Flüssigkeiten kann dieser Druck sogar negativ sein und die Flüssigkeit wird aufgesogen wie in einem Schwamm: Wie in einer Kapillare wird jede einzelne Flüssigkeitsoberfläche so weit in eine Pore aufgesogen, dass sie in der dreidimensionalen Struktur mit den Flüssigkeitsoberflächen der Nachbarporen verschmilzt und weiter fließen kann. Diese (kooperativen) Wechselwirkungen mit den Nachbarporen sorgen dafür, dass sich glatte Fronten ausbilden und fast alle Luft aus dem Schwamm (bzw. fast alles Öl aus dem Gestein) verdrängt wird.

Verzweigte Fronten
Schlecht benetzende Flüssigkeiten müssen in die gepackten Kugeln hineingepresst werden und dringen nur in die jeweils größte Pore ein. Wenn die nachfolgenden Poren gleich groß oder größer sind, kann die Flüssigkeit durch diese Stellen weiter fließen. Sind die nachfolgenden Poren aber kleiner, so bleibt die Flüssigkeit an dieser Stelle stehen, dringt an anderer Stelle der Probe in die jeweils größte Pore ein und bildet so eine verzweigte Front. Dabei fließt das eindringende Wasser um die Kontaktstellen der Kugeln herum, die weiterhin mit dem Öl umgeben sind. Während dieses Prozesses bildet das Öl ebenfalls eine komplexe, zusammenhängende Flüssigkeitsstruktur aus, wie man sie auch in feuchtem Sand findet. Wird weiter Wasser in die Probe eingepumpt, so zerfällt diese zusammenhängende Ölstruktur in kleinere Bereiche, die durch das eindringende Wasser nicht mehr verdrängt werden können und die Menge des zurückbleibenden Öls bestimmen.

Computertomographie macht’s möglich
Diese Beobachtungen waren möglich, weil die Wissenschaftler mit der aus der Medizin bekannten Technik der Computertomographie gearbeitet haben. Dabei werden Proben aus verschiedenen Winkeln mit Röntgenstrahlen durchleuchtet, und ein Computer ermittelt aus diesen Bildern die dreidimensionale Struktur. Wenn Wissenschaftler dabei eine brillante Röntgenquelle nutzen, wie bei dieser Studie am ESRF, können räumlichen Strukturen von wenigen Tausendstel Millimetern in Sekundenschnelle abgebildet werden. Für die bei der Ölförderung typischen Fließgeschwindigkeiten ist dies vollkommen ausreichend, um alle wesentlichen Aspekte der Dynamik zu erfassen.

„Mit unseren Ergebnissen konnten wir zeigen, dass die Benetzbarkeit der eindringenden Flüssigkeit entscheidend für die Struktur der sich bildenden Benetzungsfront ist, und dass sie im Falle von regelmäßigen Kugelschüttungen sogar eine quantitative Vorhersage der Menge des zurückbleibenden Öls erlaubt. Wenn es gelingt, diese Erkenntnisse auf natürliche Gesteine anzuwenden, kann dies helfen, aus vorhandenen Ölreservoirs mehr Öl zu gewinnen und Ressourcen zu schonen“, sagt Physiker Ralf Seemann (MPIDS und Universität des Saarlandes) als Leiter der Studie.

Originalveröffentlichung:
Kamaljit Singh, Hagen Scholl, Martin Brinkmann, Marco Di Michiel, Mario Scheel, Stephan Herminghaus and Ralf Seemann, „The Role of Local Instabilities in Fluid Invasion into Permeable Media”, Scientific Reports 7, Article number 444 (2017), DOI: 10.1038/s41598-017-00191-y.

Anzeige

Weitere Beiträge zum Thema

Die Atomsondentomographie zeigt die inneren Strukturen der Materialien bis hin zum einzelnen Atom. Sie wird dabei helfen, die Aussagekraft der neue Röntgentomographie zu überprüfen (Foto: Oliver Dietze).

Materialforschung und WerkstofftechnikSchnell und zerstörungsfrei mit Röntgentomographie

Eine neuartige Röntgentomographie-Anlage ermöglicht es jetzt, Materialien in Nanodimensionen genauer als bisher abzubilden und dabei auch dynamische Prozesse wie etwa die Verformung von Metallen zu analysieren.

…mehr
Göttin Isis mit Horuskind

Altägyptische Gussformen für GötterfigurenµCT erlaubt sensationelle Einblicke

Gussformen, die zur Herstellung von Götterfiguren aus Bronze dienten, wurden üblicherweise zerstört und nicht der Nachwelt überliefert. Aus erhaltenen Gussformen konnten durch ein Forschungsprojekt solche Figuren gegossen werden.

…mehr
3D-Darstellung der inneren Struktur eines Mikrochips (Prozessor der Firma Intel).

3D-RöntgenbilderFeinste Details eines Mikrochips sichtbar gemacht

Forschende des Paul Scherrer Instituts PSI haben detaillierte 3D-Röntgenbilder eines handelsüblichen Computerchips erstellt. Dabei wurden erstmals zerstörungsfrei und ohne Verzeichnungen oder Verzerrungen die Verläufe der innen liegenden, nur 45 nm breiten Stromleitungen und die 34 nm hohen Transistoren deutlich sichtbar. 

…mehr
Der Atomsonden-Tomograph der ETH Zürich mit den metallfarbenen Aufbauten, welche die Messung von mit flüssigem Stickstoff gekühlten Proben ermöglichen. (Bild: ETH Zürich / Stephan Gerstl)

Tieftemperatur-Atomsonden-TomographieWasserstoff-Einschlüsse höchstauflösend 3D-kartiert

Mit einer Tomographie-Methode ist es Materialwissenschaftlern erstmals gelungen, Wasserstoff-Einschlüsse in einem Metall auf das einzelne Atom genau dreidimensional zu lokalisieren. 

…mehr
Röntgenphysiker

Neue Aufnahmetechnik für die CTSchärfere Bilder auch aus „unscharfen“ Röntgenquellen

Computertomografie mit Röntgenstrahlung liefert Bilder über die innere Struktur von Objekten und Körpern. Dabei wird die dreidimensionale Struktur durch eine Serie von Projektionsbildern errechnet.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung