Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik>

Datenübertragung - neue Rekorde mit verdrehten Lichtteilchen aufgestellt

Experimente mit verdrehten LichtteilchenNeue Rekorde mit „Schrauben aus Licht" aufgestellt

Dem Forscherteam um Anton Zeilinger ist es gelungen, zwei neue Rekorde beim Experimentieren mit verdrehten Lichtteilchen aufzustellen. Zum einen konnten sie zeigen, dass die Verdrehung von Licht selbst über eine Distanz von 143 km aufrechterhalten bleibt, was zukünftige Datenübertragung revolutionieren könnte.

Falschfarbendarstellung

Andererseits haben sie es in Zusammenarbeit mit australischen Wissenschaftern geschafft, einzelne Lichtquanten stärker zu verdrehen als je zuvor und diese zudem mit einem zweiten Teilchen zu verschränken. Auch diese Ergebnisse, veröffentlicht im renommierten Fachmagazin PNAS, weisen auf in Zukunft mögliche vergrößerte Speichermöglichkeiten auf einzelnen Lichtquanten hin.

Schrauben aus Licht
Immer wieder überraschen neue Eigenschaften von Licht die Forschungswelt. So kann man Licht etwa in eine korkenzieherartige Form bringen, um sogenannte „Schrauben aus Licht" zu erzeugen, wie es Anton Zeilinger, Quantenphysiker an der Universität Wien, bezeichnet. Das erstaunliche dabei ist, dass man jedem einzelnen Lichtteilchen, also Photonen, eine im Prinzip beliebige Anzahl an Windungen aufprägen kann. Je größer die Anzahl an Windungen, desto größer die so genannte Quantenzahl, mit der man das Photon beschreibt.

Anzeige
Weitere Beiträge zuQuantenphysikLasertechnik

Diese Eigenschaft haben sich nun die Wissenschafter des Vienna Centers for Quantum Science and Technology (VCQ) an der Universität Wien und des Instituts für Quantenoptik und Quanteninformation Wien (IQOQI Wien) der Österreichischen Akademie der Wissenschaften in zwei Arbeiten zu Nutze gemacht und dabei bisherige Rekorde bezüglich der Übertragungsdistanz sowie Größe der Quantenzahl gebrochen.

Lichtschraube

Nachrichten mit Lichtschrauben über 143 km übermittelt
Lichtschrauben können im Prinzip beliebig viel Information pro Photon enthalten, im Gegensatz zu Polarisation, der Schwingungsrichtung des Lichts, mit der sich nur ein Bit pro Lichtteilchen an Information übertragen lässt. So wurden unter Laborbedingungen bereits Datenraten von bis zu 100 Terabit pro Sekunde erreicht, was dem Inhalt von etwa 120 Blue-Ray-Discs entspricht. Die Übertragung in realistischen Szenarien steckt hingegen noch in den Kinderschuhen. Neben der Übertragung über kurze Distanzen in speziellen Glasfasern konnten über freie Wegstrecken – benötigt etwa zur Satellitenkommunikation – bisher nur 3 km zurückgelegt werden; ein Rekord, den dasselbe Team 2014 aufgestellt hatte.

In der aktuellen Studie zeigen die Forscher um Anton Zeilinger und Mario Krenn, dass in Lichtschrauben kodierte Information selbst nach über 100 km noch immer rekonstruiert werden kann. Das Experiment fand zwischen den Kanarischen Inseln von La Palma und dem 143 km entfernten Teneriffa statt. „Die Nachricht 'Hello World!‘' wurde mithilfe eines optischen Hologramms auf einen grünen Laser aufgeprägt, und auf der anderen Insel mithilfe eines neuronalen Netzes entschlüsselt", erklärt Krenn, Dissertant in Zeilingers Gruppe. Nachdem nun gezeigt wurde, dass diese Lichteigenschaften im Prinzip über große Distanzen erhalten bleiben, müssen sie mit modernen Kommunikationstechnologien verbunden werden – woran bereits mehrere Gruppen weltweit arbeiten.

Quantenverschränkung mit fünfstelligen Quantenzahlen
Im zweiten Experiment gingen die Forscher, in Zusammenarbeit mit einer Gruppe aus Canberra in Australien, der Frage auf den Grund, wie stark sich einzelne Photonen schraubenartig verdrehen lassen, ohne eindeutige Quanteneigenschaften zu verlieren. Stimmt die Quantenphysik also auch im Limit der großen Quantenzahlen oder übernimmt dann wieder die klassische Physik bzw. Alltagswelt das Ruder?

Optical Ground Station Teleskop

Die Wissenschafter nutzten hierfür eine neue Technik der australischen Kollegen, so genannte spirale Phasenspiegel, mit welchen sich noch nie da gewesene Verdrehungen und somit riesige Quantenzahlen erreichen lassen. Die speziell für das Experiment in Wien hergestellten Spiegel erzeugen Lichtschrauben mit einer Quantenzahl von über 10000 und sind damit hundertmal Mal stärker verdreht als in früheren Experimenten.

Im Experiment erzeugten die Wiener Forscher zunächst verschränkte Photonenpaare, d.h. zwei Lichtteilchen, die trotz räumlicher Trennung scheinbar miteinander in Verbindung stehen; einem quantenmechanischen Phänomen, welches Einstein bereits zu den Worten „spukhafte Fernwirkung" veranlasste. Anschließend verdrehten sie eines der Teilchen mit Hilfe der australischen Spiegel ohne die Verschränkung zu zerstören und zeigten damit, dass die Quantenphysik auch im Bereich der fünfstelligen Quantenzahlen die richtigen Vorhersagen liefert.

Obwohl das grundlegende Interesse zunächst im Vordergrund stand, sind zukünftige Anwendungen nicht ausgeschlossen. „Schon die enorme Komplexität des erzeugten Lichtstrahls ist beeindruckend und kann als ein anschauliches Zeichen gesehen werden, wie viel Information auf so einem einzelnen Lichtquant Platz haben sollte", erläutert Robert Fickler, der gerade als Postdoc an der Universität von Ottawa, Kanada, arbeitet.

In beiden Studien ist es den Wissenschaftern gelungen, kleine Weltrekorde aufzustellen, um einerseits grundlegenden Frage zu klären und andererseits den Weg zu möglichen Zukunftstechnologien aufzuzeigen.

Die Forschung wurde gefördert durch den Europäischen Forschungsrat (ERC) sowie den österreichischen Fonds zur Förderung der wissenschaftlichen Forschung (FWF), dem österreichischen Bundesministerium für Wissenschaft, Forschung und Wirtschaft (BMFWF) und der Europäischen Weltraumorganisation (ESA).

Publikationen:
Robert Fickler, Geoff T. Campbell, Ben C. Buchler, Ping Koy Lam, Anton Zeilinger: "Quantum entanglement of angular momentum states with quantum numbers up to 10010": https://arxiv.org/abs/1607.00922.
http://www.pnas.org/cgi/doi/10.1073/pnas.1612023113

Mario Krenn, Johannes Handsteiner, Matthias Fink, Robert Fickler, Rupert Ursin, Mehul Malik, Anton Zeilinger: "Twisted Light Transmission over 143 kilometers": https://arxiv.org/abs/1606.01811.
http://www.pnas.org/cgi/doi/10.1073/pnas.1616889113

Weitere Informationen:
Forschungsgruppe Quantenoptik, Quantennanophysik und Quanteninformation an der Fakultät für Physik der Universität Wien und Institut für Quantenoptik und Quanteninformation Wien (IQOQI Wien) der Österreichischen Akademie der Wissenschaften: http://www.quantum.at/
Vienna Center for Quantum Science and Technology (VCQ): http://vcq.quantum.at/

Wissenschaftliche Kontakte:
Dipl.-Ing. Mario Krenn
Fakultät für Physik, Universität Wien
E-Mail: mario.krenn@univie.ac.at

Dr. Robert Fickler
Department of Physics, University of Ottawa
E-Mail: rfickler@uottawa.ca

Anzeige

Weitere Beiträge zum Thema

Quantenphysik: Schnellere Verschränkung entfernter Quantenpunkte

QuantenphysikSchnellere Verschränkung entfernter Quantenpunkte

Verschränkungszustände weit entfernter Quantenobjekte sind ein wichtiger Baustein zukünftiger Informationstechnologien. ETH-Forscher haben nun ein Verfahren entwickelt, mit dem sich solche Zustände tausendmal schneller als bisher erzeugen lassen.

…mehr
Verschränkte Photonen

Verschränkte PhotonenQuantenphysik für das menschliche Auge sichtbar machen

Die Voraussagen der Quantenphysik sind durch unzählige Experimente bestätigt. Doch kein Mensch hat bisher den quantenphysikalischen Effekt der Verschränkung von Auge direkt beobachtet.

…mehr
Das philosophische Problem der Interpretation der Quantenmechanik steht u.a. im Fokus der Tagung „Shut up and Contemplate". (Copyright: Universität Wien / Barbara Mair)

Naturwissenschaft und PhilosophieVon Karl Popper zur Quantenmechanik

„ShutUpandContemplate!" lautet der Name eines Symposiums, das am 3. März an der Fakultät für Physik stattfindet und eine Verbindung zwischen der Naturwissenschaft und ihrem philosophischen und sozioökonomischen Kontext schaffen will.

…mehr
Schematische Darstellung eines aufgezeichneten Kollisionsereignisses mit zwei Lichtteilchen am ATLAS-Experiment vom 12. Dezember 2015. (Foto/©: ATLAS Collaboration)

Licht-an-Licht-StreuungPhotonen können miteinander kollidieren

Teilchenphysiker am Forschungszentrum CERN bei Genf haben eine 80 Jahre alte Annahme über die Streuung von Lichtteilchen an Lichtteilchen zum ersten Mal in Teilchenkollisionen experimentell beobachtet. So wurde bestätigt, dass die Lichtteilchen, genannt Photonen, wenn sie aufeinandertreffen, miteinander wechselwirken können.

…mehr
Künstlerische Sicht auf die thermische Leitwertquantisierung in einem atomar dünnen Goldkontakt. (Erstellt von Enrique Sahagun)

Durchbruch mit einer Kette aus GoldatomenBesseres Verständnis des Wärmetransportes

Die präzise Kontrolle des Elektronentransportes in der Mikroelektronik ermöglicht komplexe logische Schaltungen, wie sie täglich in Smartphones und Laptops genutzt werden. Von ähnlich fundamentaler Bedeutung ist der Wärmetransport, der bei sich immer weiter verkleinernden Chips beispielsweise für die Kühlung entscheidend ist.

…mehr

Neue Stellenanzeigen