Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik>

Datenübertragung - neue Rekorde mit verdrehten Lichtteilchen aufgestellt

Terahertz-KalorimetrieWie sich Wasser in der Umgebung von gelösten Molekülen verhält

Hat Idee des Terahertz-Kalorimeters realisiert: Martina Havenith

Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, mit der sie Veränderungen in der Energie und Struktur von Wassermolekülen in der Umgebung gelöster Moleküle erfassen können. 

…mehr

Experimente mit verdrehten LichtteilchenNeue Rekorde mit „Schrauben aus Licht" aufgestellt

Dem Forscherteam um Anton Zeilinger ist es gelungen, zwei neue Rekorde beim Experimentieren mit verdrehten Lichtteilchen aufzustellen. Zum einen konnten sie zeigen, dass die Verdrehung von Licht selbst über eine Distanz von 143 km aufrechterhalten bleibt, was zukünftige Datenübertragung revolutionieren könnte.

Falschfarbendarstellung

Andererseits haben sie es in Zusammenarbeit mit australischen Wissenschaftern geschafft, einzelne Lichtquanten stärker zu verdrehen als je zuvor und diese zudem mit einem zweiten Teilchen zu verschränken. Auch diese Ergebnisse, veröffentlicht im renommierten Fachmagazin PNAS, weisen auf in Zukunft mögliche vergrößerte Speichermöglichkeiten auf einzelnen Lichtquanten hin.

Schrauben aus Licht
Immer wieder überraschen neue Eigenschaften von Licht die Forschungswelt. So kann man Licht etwa in eine korkenzieherartige Form bringen, um sogenannte „Schrauben aus Licht" zu erzeugen, wie es Anton Zeilinger, Quantenphysiker an der Universität Wien, bezeichnet. Das erstaunliche dabei ist, dass man jedem einzelnen Lichtteilchen, also Photonen, eine im Prinzip beliebige Anzahl an Windungen aufprägen kann. Je größer die Anzahl an Windungen, desto größer die so genannte Quantenzahl, mit der man das Photon beschreibt.

Anzeige
Weitere Beiträge zuQuantenphysikLasertechnik

Diese Eigenschaft haben sich nun die Wissenschafter des Vienna Centers for Quantum Science and Technology (VCQ) an der Universität Wien und des Instituts für Quantenoptik und Quanteninformation Wien (IQOQI Wien) der Österreichischen Akademie der Wissenschaften in zwei Arbeiten zu Nutze gemacht und dabei bisherige Rekorde bezüglich der Übertragungsdistanz sowie Größe der Quantenzahl gebrochen.

Lichtschraube

Nachrichten mit Lichtschrauben über 143 km übermittelt
Lichtschrauben können im Prinzip beliebig viel Information pro Photon enthalten, im Gegensatz zu Polarisation, der Schwingungsrichtung des Lichts, mit der sich nur ein Bit pro Lichtteilchen an Information übertragen lässt. So wurden unter Laborbedingungen bereits Datenraten von bis zu 100 Terabit pro Sekunde erreicht, was dem Inhalt von etwa 120 Blue-Ray-Discs entspricht. Die Übertragung in realistischen Szenarien steckt hingegen noch in den Kinderschuhen. Neben der Übertragung über kurze Distanzen in speziellen Glasfasern konnten über freie Wegstrecken – benötigt etwa zur Satellitenkommunikation – bisher nur 3 km zurückgelegt werden; ein Rekord, den dasselbe Team 2014 aufgestellt hatte.

In der aktuellen Studie zeigen die Forscher um Anton Zeilinger und Mario Krenn, dass in Lichtschrauben kodierte Information selbst nach über 100 km noch immer rekonstruiert werden kann. Das Experiment fand zwischen den Kanarischen Inseln von La Palma und dem 143 km entfernten Teneriffa statt. „Die Nachricht 'Hello World!‘' wurde mithilfe eines optischen Hologramms auf einen grünen Laser aufgeprägt, und auf der anderen Insel mithilfe eines neuronalen Netzes entschlüsselt", erklärt Krenn, Dissertant in Zeilingers Gruppe. Nachdem nun gezeigt wurde, dass diese Lichteigenschaften im Prinzip über große Distanzen erhalten bleiben, müssen sie mit modernen Kommunikationstechnologien verbunden werden – woran bereits mehrere Gruppen weltweit arbeiten.

Quantenverschränkung mit fünfstelligen Quantenzahlen
Im zweiten Experiment gingen die Forscher, in Zusammenarbeit mit einer Gruppe aus Canberra in Australien, der Frage auf den Grund, wie stark sich einzelne Photonen schraubenartig verdrehen lassen, ohne eindeutige Quanteneigenschaften zu verlieren. Stimmt die Quantenphysik also auch im Limit der großen Quantenzahlen oder übernimmt dann wieder die klassische Physik bzw. Alltagswelt das Ruder?

Optical Ground Station Teleskop

Die Wissenschafter nutzten hierfür eine neue Technik der australischen Kollegen, so genannte spirale Phasenspiegel, mit welchen sich noch nie da gewesene Verdrehungen und somit riesige Quantenzahlen erreichen lassen. Die speziell für das Experiment in Wien hergestellten Spiegel erzeugen Lichtschrauben mit einer Quantenzahl von über 10000 und sind damit hundertmal Mal stärker verdreht als in früheren Experimenten.

Im Experiment erzeugten die Wiener Forscher zunächst verschränkte Photonenpaare, d.h. zwei Lichtteilchen, die trotz räumlicher Trennung scheinbar miteinander in Verbindung stehen; einem quantenmechanischen Phänomen, welches Einstein bereits zu den Worten „spukhafte Fernwirkung" veranlasste. Anschließend verdrehten sie eines der Teilchen mit Hilfe der australischen Spiegel ohne die Verschränkung zu zerstören und zeigten damit, dass die Quantenphysik auch im Bereich der fünfstelligen Quantenzahlen die richtigen Vorhersagen liefert.

Obwohl das grundlegende Interesse zunächst im Vordergrund stand, sind zukünftige Anwendungen nicht ausgeschlossen. „Schon die enorme Komplexität des erzeugten Lichtstrahls ist beeindruckend und kann als ein anschauliches Zeichen gesehen werden, wie viel Information auf so einem einzelnen Lichtquant Platz haben sollte", erläutert Robert Fickler, der gerade als Postdoc an der Universität von Ottawa, Kanada, arbeitet.

In beiden Studien ist es den Wissenschaftern gelungen, kleine Weltrekorde aufzustellen, um einerseits grundlegenden Frage zu klären und andererseits den Weg zu möglichen Zukunftstechnologien aufzuzeigen.

Die Forschung wurde gefördert durch den Europäischen Forschungsrat (ERC) sowie den österreichischen Fonds zur Förderung der wissenschaftlichen Forschung (FWF), dem österreichischen Bundesministerium für Wissenschaft, Forschung und Wirtschaft (BMFWF) und der Europäischen Weltraumorganisation (ESA).

Publikationen:
Robert Fickler, Geoff T. Campbell, Ben C. Buchler, Ping Koy Lam, Anton Zeilinger: "Quantum entanglement of angular momentum states with quantum numbers up to 10010": https://arxiv.org/abs/1607.00922.
http://www.pnas.org/cgi/doi/10.1073/pnas.1612023113

Mario Krenn, Johannes Handsteiner, Matthias Fink, Robert Fickler, Rupert Ursin, Mehul Malik, Anton Zeilinger: "Twisted Light Transmission over 143 kilometers": https://arxiv.org/abs/1606.01811.
http://www.pnas.org/cgi/doi/10.1073/pnas.1616889113

Weitere Informationen:
Forschungsgruppe Quantenoptik, Quantennanophysik und Quanteninformation an der Fakultät für Physik der Universität Wien und Institut für Quantenoptik und Quanteninformation Wien (IQOQI Wien) der Österreichischen Akademie der Wissenschaften: http://www.quantum.at/
Vienna Center for Quantum Science and Technology (VCQ): http://vcq.quantum.at/

Wissenschaftliche Kontakte:
Dipl.-Ing. Mario Krenn
Fakultät für Physik, Universität Wien
E-Mail: mario.krenn@univie.ac.at

Dr. Robert Fickler
Department of Physics, University of Ottawa
E-Mail: rfickler@uottawa.ca

Anzeige

Weitere Beiträge zum Thema

Quantenphysik: Schnellere Verschränkung entfernter Quantenpunkte

QuantenphysikSchnellere Verschränkung entfernter Quantenpunkte

Verschränkungszustände weit entfernter Quantenobjekte sind ein wichtiger Baustein zukünftiger Informationstechnologien. ETH-Forscher haben nun ein Verfahren entwickelt, mit dem sich solche Zustände tausendmal schneller als bisher erzeugen lassen.

…mehr
Verschränkte Photonen

Verschränkte PhotonenQuantenphysik für das menschliche Auge sichtbar machen

Die Voraussagen der Quantenphysik sind durch unzählige Experimente bestätigt. Doch kein Mensch hat bisher den quantenphysikalischen Effekt der Verschränkung von Auge direkt beobachtet.

…mehr
Physiker testen mit einem Interferometer, ob die Standard-Quantenmechanik korrekt oder eine komplexere Theorie notwendig ist.

QuantenmechanikAuf der Suche nach Abweichungen von der Standardtheorie

Auf der Suche nach Abweichungen von der Standardtheorie der Quantenmechanik testeten Physiker, ob die Quantenmechanik ein noch raffinierteres mathematisches Regelwerk benötigt. 

…mehr
schwarze Diamanten

QuantenspeicherQuantenphysikalisch gekoppelte Diamanten

Atomare Fehler in Diamanten können als Quantenspeicher verwendet werden. An der TU Wien gelang es nun erstmals, Defekte unterschiedlicher Diamanten quantenphysikalisch zu koppeln. Diamanten mit winzigen Fehlern könnten für die Zukunft der Quantentechnologie eine große Rolle spielen. 

…mehr
Kryostat

Neuartige QuantenlichtquelleLichtteilchen im Doppelpack

Die Quantenphysik ist unter anderem deshalb so schwierig zu verstehen, weil sich die entsprechende Forschung meist in einem Mikrokosmos aus einzelnen Atomen, Elektronen und Photonen abspielt – also nicht greifbar für das menschliche Auge.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung