Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik>

Photonen können miteinander kollidieren

Terahertz-KalorimetrieWie sich Wasser in der Umgebung von gelösten Molekülen verhält

Hat Idee des Terahertz-Kalorimeters realisiert: Martina Havenith

Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, mit der sie Veränderungen in der Energie und Struktur von Wassermolekülen in der Umgebung gelöster Moleküle erfassen können. 

…mehr

Licht-an-Licht-StreuungPhotonen können miteinander kollidieren

Teilchenphysiker am Forschungszentrum CERN bei Genf haben eine 80 Jahre alte Annahme über die Streuung von Lichtteilchen an Lichtteilchen zum ersten Mal in Teilchenkollisionen experimentell beobachtet. So wurde bestätigt, dass die Lichtteilchen, genannt Photonen, wenn sie aufeinandertreffen, miteinander wechselwirken können.

Schematische Darstellung eines aufgezeichneten Kollisionsereignisses mit zwei Lichtteilchen am ATLAS-Experiment vom 12. Dezember 2015. (Foto/©: ATLAS Collaboration)

Nach klassischer Theorie ist eine solche Wechselwirkung von Lichtstrahlen nicht erlaubt – sie fliegen einfach durcheinander hindurch. Die deutschen Physiker Werner Heisenberg und Hans Euler hatten allerdings bereits 1935 im Rahmen der Quantenelektrodynamik eine Vorhersage getroffen, dass in ganz seltenen Fällen die Möglichkeit einer Wechselwirkung besteht. Im Rahmen des ATLAS-Experiments am CERN konnten Wissenschaftler aus der Kollision von Blei-Ionen zum ersten Mal die Interaktion von Lichtteilchen und ihre Streuung feststellen.

„Wir haben eine unglaublich schöne Messung erhalten“, sagt Prof. Dr. Matthias Schott von der Johannes Gutenberg-Universität Mainz (JGU) zu den Ergebnissen. Der Teilchenphysiker war mit seiner Arbeitsgruppe und Forschern des Deutschen Elektronen-Synchrotron DESY Hamburg sowie der AGH Universität Krakau wesentlich an der Messung der Licht-an-Licht-Streuung beteiligt.

Anzeige
Weitere Beiträge zuTeilchenphysikQuantenphysik

Mit den Maxwellschen Gleichungen legte der schottische Physiker James Clerk Maxwell 1880 den Grundstein für das klassische Verständnis von Licht, was eigentlich eine Streuung von Licht an Licht verbietet. Die Berücksichtigung von Quanteneffekten, die sowohl das Elektron als auch sein Antiteilchen, das Positron, beinhalten, führte dann 1935 zur Abänderung der Maxwellschen Gleichungen durch Euler und Heisenberg. „Jetzt haben wir vor wenigen Wochen am Large Hadron Collider des CERN den endgültigen Durchbruch erreicht und konnten dort zum ersten Mal einen Hinweis sehen, wie Lichtteilchen miteinander wechselwirken“, erklärt Matthias Schott mit einem Hinweis darauf, dass solche Ereignisse sehr selten vorkommen.

Bei den Experimenten zur Licht-an-Licht-Streuung wurden im Large Hadron Collider (LHC), dem weltweit größten Teilchenbeschleuniger, zwei Teilchenstrahlen mit Blei-Ionen bei einer Schwerpunktsenergie von 5 TeV zur Kollision gebracht. Diese hochrelativistischen Blei-Ionen haben in der Nähe des Atomkerns ein sehr hohes elektrisches Feld, das effektiv als Strahl von Lichtteilchen angesehen werden kann. Bei sehr wenigen Kollisionsereignissen kommen sich Blei-Ionen so nahe, dass sie zwar selbst nicht in der Kollision zerbrechen, aber zwei ihrer begleitenden Lichtteilchen aneinander gestreut werden und im ATLAS-Detektor nachgewiesen werden können. Insgesamt konnten 13 Ereignisse mit der entsprechenden Signatur in den Daten des ATLAS-Detektors aus dem Jahr 2015 ermittelt werden. Die Ergebnisse wurden nun am CERN vorgestellt.

Nach einer zweijährigen Umbaupause ist der Large Hadron Collider im April 2015 wieder in Betrieb gegangen. Wissenschaftler der Johannes Gutenberg-Universität Mainz sind insbesondere am ATLAS-Experiment beteiligt, einem der vier großen Experimente am LHC. Der Detektor kann Teilchen, die bei den Protonen- oder Blei-Kollisionen entstehen, feststellen und präzise vermessen. Matthias Schott ist Lichtenberg-Professor und Leiter einer Emmy Noether-Nachwuchsgruppe an der JGU. Seine Forschungen im Bereich der Experimentellen Teilchen- und Astroteilchenphysik (ETAP) befassen sich insbesondere mit grundlegenden Fragen zu den Bausteinen der Materie.

Weitere Informationen:

Juniorprof. Dr. Matthias Schott
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
E-Mail: mschott@cern.ch
http://www.lichtenberg.physik.uni-mainz.de/

Anzeige

Weitere Beiträge zum Thema

Ein universelles Quantengatter: Max-Planck-Physiker lassen zwei Photonen (rechts) miteinander wechselwirken, indem sie ein Atom in einem Resonator als Vermittler verwenden. Der Resonator besteht aus zwei Spiegeln, zwischen denen das Atom mit einem Laser festgehalten wird. (© Stephan Welte / MPI für Quantenoptik)

QuantenphysikQuantenlogik mit Photonen

Lichtteilchen sind für einander weniger als Luft. Damit sie sich bei der Verarbeitung von Quanteninformation dennoch gegenseitig schalten können, haben Forscher des Max-Planck-Instituts für Quantenoptik in Garching bei München nun ein universelles Quantengatter entwickelt.

…mehr

PhotonenpistoleEinzelne Lichtteilchen aussenden und einsammeln

Davon träumen Forscher seit Jahrzehnten: die sogenannte Photonenpistole. Damit ist es möglich, zu einem bestimmten Zeitpunkt genau ein Photon zu erhalten. Wie auf Bestellung.

…mehr

Nuklearer TaktgeberBasis für neuartige Kernuhr

LMU-Forscher messen erstmals die Lebensdauer eines exotischen Atomkern-Zustands: Eine wesentliche Voraussetzung, um eine Kernuhr entwickeln zu können, die Zeit noch genauer misst als die heutigen Atomuhren.

…mehr
BASE-Experiment

Beitrag zur Materie-Antimaterie-FrageMagnetische Kraft von Antiprotonen genauestens bestimmt

So offensichtlich es ist, dass Materie existiert, ebenso rätselhaft ist noch immer ihre Herkunft. Denn eigentlich hätte nach den Prinzipien der Teilchenphysik bei der Entstehung des Weltalls genauso viel Materie wie Antimaterie gebildet werden müssen.

…mehr
Aufgezeichneter Zerfall eines W-Bosons mit dem ATLAS-Detektor am LHC: Für die Bestimmung der W-Boson-Masse wurden mehr als 10 Millionen Ereignisse dieser Art vermessen und untersucht. (Abb./©: ATLAS Collaboration)

TeilchenphysikW-Boson-Messung bestätigt das Standardmodell

Es ist ein großer Erfolg und eine kleine Enttäuschung zugleich: Nach fünfjähriger Arbeit konnten Physiker am Forschungszentrum CERN am Dienstag dem internationalen Fachpublikum eine Hochpräzisionsmessung der Masse des W-Bosons vorstellen.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung