Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik>

Quantenphysik: Fundamentales Problem unlösbar

QuantenmechanikAuf der Suche nach Abweichungen von der Standardtheorie

Physiker testen mit einem Interferometer, ob die Standard-Quantenmechanik korrekt oder eine komplexere Theorie notwendig ist.

Auf der Suche nach Abweichungen von der Standardtheorie der Quantenmechanik testeten Physiker, ob die Quantenmechanik ein noch raffinierteres mathematisches Regelwerk benötigt. 

…mehr

QuantenphysikFundamentales Problem unlösbar

Ein vielen fundamentalen Fragen der Teilchen- und Quantenphysik zugrunde liegendes mathematisches Problem ist nachweislich unlösbar. Den Beweis dafür haben Wissenschaftler der Technischen Universität München (TUM), des University College London (UCL) und der Universidad Complutense in Madrid – ICMAT erbracht.

Quantenphysik

Es ist das erste wichtige Problem der Physik, für das eine so grundlegende Einschränkung gilt. Die Ergebnisse zeigen, dass sogar eine perfekte und vollständige Beschreibung der mikroskopischen Eigenschaften eines Materials nicht ausreicht, um sein makroskopisches Verhalten vorherzusagen.

Eine kleine „spektrale Lücke" – die Energie, die benötigt wird, um ein Elektron aus dem niedrigsten Energiezustand in einen angeregten Zustand zu befördern – ist die zentrale Eigenschaft von Halbleitern. In ähnlicher Weise spielen spektrale Lücken auch bei vielen anderen Materialien eine wichtige Rolle. Schließt sich diese spektrale Lücke, das heißt, wird der Energieabstand sehr klein, können Materialien sprunghaft zu einem völlig anderen Verhalten übergehen. Ein Beispiel hierfür ist der Übergang zur Supraleitung bei tiefen Temperaturen.

Anzeige

Eine gängige Methode bei der Suche nach Materialien, die Strom auch bei Raumtemperatur verlustlos leiten oder andere wünschenswerte Eigenschaften besitzen, ist die mathematische Modellierung: Ausgehend von einer mikroskopischen Beschreibung des Materials wird auf die makroskopischen Eigenschaften geschlossen.

Supraleitende Autorennbahn
Weitere Beiträge zuQuantenphysik

Die von den Wissenschaftlern am 10.12. in Nature veröffentlichte Studie zeigt jedoch entscheidende Grenzen dieses Ansatzes. Mit ausgefeilter Mathematik bewiesen die Autoren, dass auch bei einer vollständigen mikroskopischen Beschreibung eines Quantenmaterials im Allgemeinen nicht vorhersagbar ist, ob das Material eine spektrale Lücke hat.

„Alan Turing ist berühmt für seine Rolle beim Knacken des Enigma-Codes“, sagt Co-Autor Dr. Toby Cubitt, Informatiker am UCL. „Aber unter Mathematikern und Informatikern, er ist noch bekannter für seinen Beweis, dass bestimmte mathematische Fragen ‚unentscheidbar’ sind – sie sind weder wahr noch falsch, sondern außerhalb der Reichweite der Mathematik. Wir haben gezeigt, dass die spektrale Lücke eines dieser unentscheidbaren Probleme ist. Das bedeutet, es kann keine allgemeine Methode geben um festzustellen, ob ein quantenmechanisch beschriebenes Material eine spektrale Lücke hat oder nicht. Dies begrenzt die Möglichkeiten, das Verhalten von Quantenmaterialien vorherzusagen entscheidend – möglicherweise sogar grundlegende Aussagen in der Teilchenphysik.“

Eine Million Dollar zu gewinnen
Das bekannteste Problem bezüglich spektraler Lücken ist die Frage, ob das Standardmodell der Teilchenphysik eine spektrale Lücke vorhersagt. Die „Yang-Mills-Massenlücke-Vermutung“ gilt als eines der sieben sogenannten Millenium-Probleme. Teilchenphysikalische Experimente wie CERN und numerische Rechnungen auf Supercomputern legen nahe, dass es auch hier eine spektrale Lücke gibt. Demjenigen, der dies mathematisch aus den Gleichungen des Standardmodells beweist, winkt ein Preis des Clay Mathematics Institute (USA) in Höhe von einer Million Dollar.

„In bestimmten Fällen kann ein Teilproblem lösbar sein, auch wenn das allgemeine Problem unentscheidbar ist. Den begehrten Preis könnte also noch jemand gewinnen“, sagt Dr. Cubitt. „Aber unsere Ergebnisse deuten stark darauf hin, dass einige der großen offenen Probleme der theoretischen Physik nachweislich unlösbar sein könnten.“

„Seit den Arbeiten von Turing und Gödel in den 1930er Jahren war bekannt, dass es prinzipiell unentscheidbare Probleme gibt“, sagt Michael Wolf, Professor für Mathematische Physik an der Technischen Universität München. „Bisher fanden sich solche jedoch nur in sehr abstrakten Winkeln der theoretischen Informatik und der mathematischen Logik. Niemand hätte so etwas mitten im Herzen der theoretischen Physik erwartet. Doch unsere Ergebnisse ändern dieses Bild. Aus einer mehr philosophischen Perspektive heraus betrachtet sind sie auch eine Herausforderung für den reduktionistischen Standpunkt: Denn die unüberwindliche Schwierigkeit liegt gerade in der Herleitung der makroskopischen Eigenschaften aus einer mikroskopischen Beschreibung.“

Eine schlechte und eine gute Nachricht
„Das alles ist aber nicht nur eine schlechte Nachricht“, sagt David Pérez-García Professor an der Universidad Complutense de Madrid und am Instituto de Ciencias Matemáticas (ICMAT). „Der Grund dafür, dass dieses Problem nicht zu lösen ist, liegt darin, dass Modelle auf dieser Ebene ein extrem abnormes Verhalten zeigen. Es macht es uns unmöglich sie zu analysieren. Aber dieses bizarre Verhalten zeigt auch eine sehr eigenartige, neue Physik, die niemand zuvor gesehen hat. Fügt man beispielsweise zu einem Stück Materie, egal wie groß, auch nur ein einziges Teilchen hinzu, könnte dies im Prinzip seine Eigenschaften dramatisch verändern. Neue Physik wie diese hat schon oft auch neue Technologien hervorgebracht.“

Die Forscher versuchen nun, ihre in der künstlichen Welt mathematischer Modelle gewonnenen Erkenntnisse auf reale Quantenmaterialien zu übertragen, die im Labor hergestellt werden können.

Die Forschung wurde von der John Templeton Foundation, der Royal Society (UK), dem spanischen Ministerium für Wirtschaft und Wettbewerbsfähigkeit (Mineco), der Madrider Regionalregierung und dem European Research Council (ERC) gefördert.

Publikation:
Undecidability of the Spectral Gap, Toby S. Cubitt, David Perez-Garcia, Michael M. Wolf; Nature, 528, 207–211, 10 December 2015. DOI: 10.1038/nature16059.

Kontakt:
Prof. Dr. Michael M. Wolf
Technische Universität München
E-Mail: m.wolf@tum.de
Web: http://www-m5.ma.tum.de/Allgemeines/MichaelWolf

Anzeige

Weitere Beiträge zum Thema

Gesamtansicht des interaktiven Quantenlabors. (Copyright: Gruppe Quantennanophysik, Universität Wien; Bild: Mathias Tomandl & Patrick Braun)

Virtuelles QuantenlaborQuantenphysik für jedermann

Ein virtuelles Labor ermöglicht erstmals die spielerische Erkundung moderner Quantenphysik. Die neuartige Lernumgebung wurde an der Fakultät für Physik der Universität Wien in Zusammenarbeit mit Studierenden und SchülerInnen entwickelt und ist rechtzeitig zu Schulbeginn frei online verfügbar (http://interactive.quantumnano.at).

…mehr
Atomchip

QuantenphysikVon guten und schlechten Quantenzuständen

Ein Trick aus der Quantentheorie macht es möglich, Quantenzustände aus tausenden Atomen zu beschreiben - mit herkömmlichen Methoden würde aller Speicherplatz der Welt dafür nicht ausreichen.

…mehr
Nanomasken

Stabile Beugungsstruktur in atomar dünnem...Quantenbeugung an einem Hauch von Nichts

Die Quantenphysik besagt, dass sich auch massive Objekte wie Wellen verhalten und scheinbar an vielen Orten zugleich sein können. Dieses Phänomen kann nachgewiesen werden, indem man diese Materiewellen an einem Gitter beugt.

…mehr
Physiker testen mit einem Interferometer, ob die Standard-Quantenmechanik korrekt oder eine komplexere Theorie notwendig ist.

QuantenmechanikAuf der Suche nach Abweichungen von der Standardtheorie

Auf der Suche nach Abweichungen von der Standardtheorie der Quantenmechanik testeten Physiker, ob die Quantenmechanik ein noch raffinierteres mathematisches Regelwerk benötigt. 

…mehr
schwarze Diamanten

QuantenspeicherQuantenphysikalisch gekoppelte Diamanten

Atomare Fehler in Diamanten können als Quantenspeicher verwendet werden. An der TU Wien gelang es nun erstmals, Defekte unterschiedlicher Diamanten quantenphysikalisch zu koppeln. Diamanten mit winzigen Fehlern könnten für die Zukunft der Quantentechnologie eine große Rolle spielen. 

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung