Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik>

Solitonen-Moleküle - gebundene Lichtpakete in Echtzeit gefilmt

QuantenmechanikAuf der Suche nach Abweichungen von der Standardtheorie

Physiker testen mit einem Interferometer, ob die Standard-Quantenmechanik korrekt oder eine komplexere Theorie notwendig ist.

Auf der Suche nach Abweichungen von der Standardtheorie der Quantenmechanik testeten Physiker, ob die Quantenmechanik ein noch raffinierteres mathematisches Regelwerk benötigt. 

…mehr

Gebundene Lichtpakete in Echtzeit gefilmtSchwingende Moleküle aus ultrakurzen Laserpulsen

Zwei Lichtstrahlen kreuzen sich typischerweise ohne großen Effekt. Klirrend aneinanderschlagende Laserschwerter gibt es also nur im Kino.

oszillierendes Laser-Pulspaar

Im Inneren eines Lasers allerdings können sich intensive Lichtpulse durchaus gegenseitig anziehen oder abstoßen. Einem Forscherteam der Universität Göttingen und der University of California in Los Angeles ist es nun gelungen, das schnelle „Duell“ zweier Pulse in Echtzeit zu verfolgen. Die Ergebnisse sind in der Fachzeitschrift Science erschienen.

Spezielle Lichtpulse, sogenannte Solitonen, können sich gegenseitig anziehen und sogar feste Bindungen eingehen. Solche Zustände, erstmals vor 30 Jahren vom Physiker Fedor Mitschke nachgewiesen, sind in mancher Hinsicht ähnlich zu chemischen Bindungen von Atomen. Sie werden daher auch „Solitonen-Moleküle“ genannt: Entweder verbinden sich einzelne Lichtpulse starr oder sie schwingen angeregt gegeneinander.

Auch in Ultrakurzpulslasern können gekoppelte Lichtpakete hin- und herlaufen, die einen zeitlichen Abstand von weniger als einer Billionstel Sekunde haben. Das Forscherteam unter Leitung von Prof. Dr. Claus Ropers vom IV. Physikalischen Institut der Universität Göttingen hat die Dynamik dieser Pulspaare nun mit einer speziellen Messmethode sichtbar gemacht. „Schickt man die ultrakurzen Pulse durch eine kilometerlange Glasfaser, werden sie zeitlich um ein Vielfaches gestreckt“, so Ropers. „Dabei entsteht ein Interferenzmuster, das den extrem kurzen Pulsabstand messbar macht.“

Anzeige
Weitere Beiträge zuPhotonikLasertechnik

„In Sekundenbruchteilen erfassen wir Millionen optische Spektren“, erklärt der Erstautor der Studie, Dr. Georg Herink. „Wir filmen dabei erstmals in Echtzeit die Bildung eines Solitonen-Moleküls und seine schnellen Schwingungen sowie Drehungen der Lichtphase.“ Die Dynamik resultiert aus dem empfindlichen Zusammenspiel einer Vielzahl linearer und nichtlinearer Effekte im Laserkristall.

„Neben dem Gewinn für die Laserphysik sind die Ergebnisse übertragbar auf verschiedene andere komplexe Systeme, in denen es ebenfalls wechselwirkende Solitonen gibt“, ergänzt Ko-Autor Felix Kurtz. Die Forscher sind zudem davon überzeugt, dass sich die Technologie der Echtzeit-Interferometrie zukünftig noch in vielen weiteren Bereichen der Optik und Photonik etablieren wird.

Originalveröffentlichung:
Georg Herink et al. „Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules”. Science 2017, Vol. 356, Issue 6333, S. 50-54, DOI: 10.1126/science.aal5326, http://science.sciencemag.org/content/356/6333/50/tab-pdf.

Kontakt:
Prof. Dr. Claus Ropers und Dr. Georg Herink
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
E-Mail: claus.ropers@uni-goettingen.de und gherink@gwdg.de
Internet: www.uni-goettingen.de/de/91116.html

Anzeige

Weitere Beiträge zum Thema

Schematische Darstellung eines aufgezeichneten Kollisionsereignisses mit zwei Lichtteilchen am ATLAS-Experiment vom 12. Dezember 2015. (Foto/©: ATLAS Collaboration)

Licht-an-Licht-StreuungPhotonen können miteinander kollidieren

Teilchenphysiker am Forschungszentrum CERN bei Genf haben eine 80 Jahre alte Annahme über die Streuung von Lichtteilchen an Lichtteilchen zum ersten Mal in Teilchenkollisionen experimentell beobachtet. So wurde bestätigt, dass die Lichtteilchen, genannt Photonen, wenn sie aufeinandertreffen, miteinander wechselwirken können.

…mehr
Ein universelles Quantengatter: Max-Planck-Physiker lassen zwei Photonen (rechts) miteinander wechselwirken, indem sie ein Atom in einem Resonator als Vermittler verwenden. Der Resonator besteht aus zwei Spiegeln, zwischen denen das Atom mit einem Laser festgehalten wird. (© Stephan Welte / MPI für Quantenoptik)

QuantenphysikQuantenlogik mit Photonen

Lichtteilchen sind für einander weniger als Luft. Damit sie sich bei der Verarbeitung von Quanteninformation dennoch gegenseitig schalten können, haben Forscher des Max-Planck-Instituts für Quantenoptik in Garching bei München nun ein universelles Quantengatter entwickelt.

…mehr
Falschfarbendarstellung

Experimente mit verdrehten LichtteilchenNeue Rekorde mit „Schrauben aus Licht" aufgestellt

Dem Forscherteam um Anton Zeilinger ist es gelungen, zwei neue Rekorde beim Experimentieren mit verdrehten Lichtteilchen aufzustellen. Zum einen konnten sie zeigen, dass die Verdrehung von Licht selbst über eine Distanz von 143 km aufrechterhalten bleibt.

…mehr
Licht schaltet Licht

Schritt hin zum photonischen ComputerEin winziger Schalter für ein paar Lichtteilchen

Die Jediritter der Star Wars-Saga führen einen unmöglichen Kampf. Das liegt nicht an der Überlegenheit des feindlichen Imperiums, sondern an der Physik.

…mehr
Sandwichartiger Aufbau der SiGeSn-Diode, die womöglich zu neuartigen energieeffizienten Anwendungen für die optische On-Chip-Datenübertragung führt. (Copyright: Forschungszentrum Jülich)

Photodiode mit ZinnWeiterer Schritt zur On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silicium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung