Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Genomics/Proteomics> Produkt-Innovationen>

Membranproteinkomplexe der Photosynthese in Sonnenkollektoren integriert

Halb-künstliches Blatt ist schneller als die PhotosyntheseProteine ersetzen Silicium

Bochumer Chemiker und Biologen haben gemeinsam eine neue Methode entwickelt, Membranproteinkomplexe der Photosynthese effizient in semiartifizielle Sonnenkollektoren zu integrieren. Der damit erzielte Elektronentransfer übertraf zum ersten Mal deutlich die in der natürlichen Photosynthese beobachteten Raten.

Halb-künstliches Blatt ist schneller als die Photosynthese: Proteine ersetzen Silicium

Diese Entdeckung eröffnet ganz neue Möglichkeiten für die Konstruktion halb-künstlicher Blätter, die als Photovoltaikanlagen mit ungeahnter Leistung funktionieren könnten. Die Forscher um Dr. Nicolas Plumeré, Prof. Dr. Wolfgang Schuhmann und Prof. Dr. Matthias Rögner berichten im Journal Chemistry - a European Journal. Ihre Studie wurde vom Journal zum "Very Important Paper" gewählt - eine Ehre, die nur fünf Prozent der eingereichten Beiträge zuteil wird.

Photosystem 1, ein widerstandsfähiger und effizienter Photosynthesekomplex
In natürlichen Blättern absorbiert der Membranproteinkomplex Photosystem 1 (PS1) das Sonnenlicht. Dessen Energie dient dann dazu, Kohlendioxid in Biomasse zu verwandeln. Auch Sonnenkollektoren, die meistens aus Halbleitern auf Siliciumbasis bestehen, sammeln das Licht, allerdings um daraus Elektrizität zu gewinnen. Ein Ansatz, um Sonnenkollektoren günstiger und aus erneuerbaren Materialien herzustellen, besteht darin, die Halbleiter durch Membranproteinkomplexe der Photosynthese zu ersetzen. Die Arbeitsgruppe von Prof. Rögner isoliert sehr stabile Photosynthesekomplexe aus thermophilen Cyanobakterien, die in einer heißen Quelle in Japan leben.

Anzeige
Weitere Beiträge zuPhotovoltaik

Der Einbau dieser natürlichen Komponenten in ein künstliches System war jedoch eine große Herausforderung: Die Photosynthesekomplexe bestehen sowohl aus hydrophoben als auch aus hydrophilen Bereichen, welche ihre Handhabung und Fixierung auf Elektroden deutlich erschweren.

Umgebung reagiert auf äußere Reize
Die Teams von Dr. Nicolas Plumeré und Prof. Dr. Wolfgang Schuhmann entwickeln komplexe leitfähige Materialien, die auf äußere Reize reagieren. In diese so genannten Redox-Hydrogele betten die Forscher den Photosynthesekomplex PS1 ein. Durch die Wahl eines geeigneten Hydrogels konnten sie die Umgebung der natürlichen Proteine genau einstellen.

Insbesondere lassen sich durch die Anpassung des pH-Werts die hydrophoben beziehungsweise hydrophilen Eigenschaften des Hydrogels kontrollieren und an die Bedürfnisse des Photosynthesekomplexes anpassen. "Diese eigens angefertigte Umgebung bietet dem Proteinkomplex optimale Bedingungen - sogar besser als in natürlichen Blättern", erklärt Dr. Nicolas Plumeré. Die Forscher ermittelten die höchsten jemals für halb-künstliche Photoelektroden gemessenen Elektronentransferraten, die sogar die der natürlichen Photosynthese um eine Größenordnung übertrafen.

Effizientere und billigere Sonnenkollektoren
"Diese Verbesserung erhöht die Effizienz unseres anfänglichen biophotovoltaischen Konzepts vom Nanowatt- in den Mikrowatt-Bereich", erläutert Nicolas Plumeré. Zwar werden siliconbasierte Sonnenkollektoren diejenigen mit biologischen Komponenten zunächst weiterhin übertreffen, was ihre Stabilität und Effizienz betrifft. Aber in verschiedenen Anwendungen sind letztere dennoch überlegen. Besonders als Energielieferanten für winzige medizintechnische Werkzeuge wie Sensoren in Kontaktlinsen bieten sie sich an. In fernerer Zukunft könnte das Biophotosystem Ausgangspunkt für die Entwicklung billiger und flexibler Solarzellen für die Anwendung auf unebenen Oberflächen sein.

Förderung:
Die Arbeiten der Forscher wurden gefördert durch den Exzellenzcluster RESOLV (EXC 1069), die Deutsche Forschungsgemeinschaft (DFG), das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Projekts Taschentuchlabor (03IS2201F) und durch die COST Action TD1102 PHOTOTECH.

Titelaufnahme:
T. Kothe, S. Pöller, F. Zhao, P. Fortgang, M. Rögner, W. Schuhmann, N. Plumeré: Engineered electron transfer chain in Photosystem 1 based photocathodes outperforms electron transfer rates in natural photosynthesis. In: Chemistry - A European Journal, 2014, DOI: 10.1002/chem.201402585 (VIP).

Weitere Informationen:
Dr. Nicolas Plumeré
Fakultät für Chemie und Biochemie, Zentrum für Elektrochemie, Ruhr-Universität Bochum
E-Mail: nicolas.plumere@rub.de

Prof. Dr. Wolfgang Schuhmann
Fakultät für Chemie und Biochemie, Lehrstuhl für Analytische Chemie Ruhr-Universität Bochum
E-Mail: wolfgang.schuhmann@rub.de

Prof. Dr. Matthias Rögner
Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, Ruhr-Universität Bochum
E-Mail: matthias.roegner@rub.de

Anzeige

Weitere Beiträge zum Thema

Polysilicon Market Outlook 2020

Verdrängungswettbewerb am Polysilicium-MarktKapazitäten weit über der Nachfrage

Die Polysilicium-Industrie wird 2018 einen scharfen Verdrängungswettbewerb erleben. Laut dem Polysilicon Market Outlook 2020 könnte ein halbes Dutzend Polysilicium-Hersteller bis Ende 2018 aus dem Markt gedrängt werden.

…mehr
Die CIGS-Dünnschichtphotovoltaik lässt sich gut in Gebäudefassaden integrieren. (Foto: Manz AG)

PhotovoltaikDie Herstellung von CIGS-Solarzellen beschleunigen

Ein Projektkonsortium aus Forschung und Industrie hat unter Beteiligung des Photovoltaik-Kompetenzzentrums (PVcomB) des Helmholtz-Zentrums Berlin ein großes Drittmittelprojekt eingeworben.

…mehr
Plastiksolarzellen

PlastiksolarzellenRöntgenblick zeigt Verschleiß

Mit dem scharfen Röntgenblick von DESYs Forschungslichtquelle PETRA III haben Wissenschaftler der Technischen Universität München den Verschleiß von Plastiksolarzellen beobachtet. Die Untersuchung liefert einen Ansatz für eine verbesserte Herstellung.

…mehr
Die innere Struktur der aktiven Schicht der untersuchten Solarzelle ohne Lösungsmittel (links), mit Lösungsmittel (Mitte) und nach Lösungsmittelverlust im Betrieb (rechts). (Bild: Christoph Schaffer / TU München)

PlastiksolarzellenRöntgenblick zeigt Verschleiß

Mit dem scharfen Röntgenblick von DESYs Forschungslichtquelle PETRA III haben Wissenschaftler der Technischen Universität München den Verschleiß von Plastiksolarzellen beobachtet.

…mehr
Prototypen der Tandem-Solarmodule, bestehend aus einem semitransparenten Perowskit-Solarmodul (rechts/vorne) und einem CIGS-Solarmodul (links/hinten). (Bild: imec/ZSW/KIT)

Neuer Dünnschicht-Photovoltaik-RekordPerowskit-CIGS-Tandem-Solarmodul mit Wirkungsgrad von 17,8 Prozent

Dünnschicht-Technologien könnten die Kosten für Solarmodule der nächsten Generation dramatisch senken. Ihre Herstellung ist günstig, aber insbesondere die Verbindung komplementärer Absorbermaterialien in einem Tandem-Solarmodul steigert die Wirkungsgrade.

…mehr

Neue Stellenanzeigen