Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Zell- und Mikrobiologie>

Multi-Organ-Chip ersetzt Tierversuche

Multi-Organ-Chip ersetzt TierversucheOrganstrukturen im Mikromaßstab

11,4 Mio. Tiere wurden laut EU-Statistik im Jahre 2011 in Forschung und Entwicklung eingesetzt, die meisten davon für Testungen. Doch nach wie vor bleibt die Aussagekraft von Tests am Tier für die Wirkung auf den Menschen begrenzt. Viele teure Experimente werden daher wieder abgebrochen.

TU-Wissenschaftler Dr. Uwe Marx mit Multi-Organ-Chip

Prof. Dr. Roland Lauster und sein Team vom TU-Fachgebiet Medizinische Biotechnologie entwickeln derzeit „Mensch auf dem Chip“-Plattformen, Organstrukturen im Mikromaßstab, die auf einem Chip Platz haben und auf Wirkstoffe wie echte Organe reagieren. Bereits fertig und funktionsfähig ist der „Zwei-Organe-Chip“. Dafür erhielt Dr. Uwe Marx, ein Wissenschaftler aus dem Team und Geschäftsführer der TissUse GmbH den Tierschutzforschungspreis des Bundesministeriums für Ernährung und Landwirtschaft (BMEL).

„Wir hoffen, dass wir Versuche an mehreren Millionen Tieren jährlich allein in Deutschland überflüssig machen – und gleichzeitig die Entwicklungskosten von neuen Medikamenten, Kosmetika und Chemikalien erheblich senken können.“ Der TU-Wissenschaftler Dr. Uwe Marx hat mit seinem Team und Kooperationspartnern den Multi-Organ-Chip (MOC) entwickelt, eine zukunftsweisende Alternative zu Tierversuchen und nachfolgenden Tests an menschlichen Probanden.

Anzeige

Die Forscher am Fachgebiet Medizinische Biotechnologie haben sich darauf spezialisiert, menschliche Organe und Organsysteme über lange Zeiten im Mikromaßstab zu züchten. Dafür nutzen sie nur wenige lebende Zellen, zum Beispiel aus Leber, Gehirn, Haut, Niere oder Darm, die in organtypischer dreidimensionaler Anordnung jeweils die komplette Funktion des Organs in kleinerem Maßstab abbilden und simulieren. Dr. Uwe Marx ist bislang der Einsatz eines Zwei-Organe-Chips für mehrere unterschiedliche Langzeittestverfahren für Substanzen gelungen, die zur Anwendung am Menschen vorgesehen sind. Die organähnlichen Gewebestrukturen auf dem Chip sind miteinander durch blutgefäßähnliche Mikrokanäle verbunden.

Zukunftsziel: der vollständige Mini-Organismus

„Das Ziel ist es, einen Mini-Organismus mit allen lebenswichtigen Organen abzubilden. Doch das ist noch Zukunftsmusik“, erklärt Uwe Marx. Aber auch mit dem Entwicklungsstand von heute können die Forscher bereits Tierversuche in großem Umfang ersetzen. „Die Mikroorgane im Chip liefern uns Ergebnisse, die die natürliche Reaktion menschlicher Organe zum Beispiel auf Nebenwirkungen von Medikamenten, Kosmetika, Chemikalien oder anderen Produkten in einzigartiger Weise, verlässlich vorhersagbar machen, so dass derartige Produkte gar nicht erst vorklinisch am Tier getestet werden müssen. Auch die nachfolgenden klinischen Tests an menschlichen Probanden könnten vielfach entfallen.

Medikamententests: Tiere reagieren anders

Animalische Organismen reagierten durchaus anders als menschliche. Durchschnittlich fielen immer noch neun von zehn Kandidaten für Medikamente, die die Sicherheits- und Wirksamkeitstestungen im Tier bestanden haben, dann in der klinischen Testung am Menschen durch. Es seien diese vielen Ausfälle, die zu hohen Entwicklungskosten führten. „Wir können mit unserem Chip also zwei Fliegen mit einer Klappe schlagen“, sagt Uwe Marx. „Wir reduzieren das Leid von Abermillionen Tieren sowie die Anzahl der Versuchspersonen in klinischen Studien bei gleichzeitig sinkenden Entwicklungskosten.“

Um das Produkt erfolgreich zu vermarkten, haben die Wissenschaftler bereits im Jahr 2010 die „TissUse GmbH“ als Spin-off der TU Berlin gegründet, deren Geschäftsführer Uwe Marx ist. „Die Entwicklung wurde durch eine Förderung aus dem ‚GO-Bio-Wettbewerb‘ des Bundesministeriums für Bildung und Forschung möglich, mit dem gründungsbereite Forscherteams in den Lebenswissenschaften unterstützt werden. Mit den ersten Produkten gehen wir nun aktiv in die Kommerzialisierungsphase“, erklärt Uwe Marx. Und diese Innovation bietet weiteres vielversprechendes Potenzial für die Berliner Gründerszene.

Weitere Informationen:
Prof. Dr. Roland Lauster, TU Berlin, Fachgebiet Medizinische Biotechnologie, E-Mail: roland.lauster@tu-berlin.de.
Dr. Uwe Marx, TU Berlin, Fachgebiet Medizinische Biotechnologie / TissUse GmbH, E-Mail: uwe.marx@tu-berlin.de.

Weitere Beiträge zum Thema

Der Mensch aus dem Baukasten: 4. Kongress Industrielle Zelltechnik

Der Mensch aus dem Baukasten4. Kongress Industrielle Zelltechnik

Am 12. und 13. September treffen sich zum 4. Mal Experten und Branchenvertreter in der Musik- und Kongresshalle Lübeck und sprechen über Trends in der Industriellen Zelltechnik.…mehr

Weitere Beiträge zu dieser Firma

Skyrmion

Bewegungsmuster von Skyrmionen sichtbar...Der Tanz der Nanowirbel

Mit Hilfe der Röntgenholografie gelang es, die Bewegungsmuster sogenannter Skyrmionen sichtbar zu machen. Dabei stießen die Forscher auf eine neue Erkenntnis: Die Nanowirbel besitzen eine Masse.

…mehr
ISS-Messgeraet

WeltraumforschungMuschelzellen im Weltall

Am 10. Januar 2015 startete die Space X5-Rakete von Cape Canaveral in Florida (USA) in den Weltraum. Mit an Bord: Fresszellen (Hämozyten) des Immunsystems der gemeinen Miesmuschel (Mytilus edulis).

…mehr

Weitere Beiträge in dieser Rubrik

Chaperone erkennen Aminosäuresequenzen auf der Oberfläche von Proteinen

Einblick in die molekulare...Forscher beobachten, wie Chaperone defekte Proteine erkennen

Proteine, auch Eiweiße genannt, erfüllen in unserem Körper lebenswichtige Funktionen: Sie transportieren Stoffe, bekämpfen Krankheitserreger oder fungieren als Katalysatoren. Damit diese Prozesse zuverlässig funktionieren, müssen die Proteine eine definierte dreidimensionale Struktur annehmen.

…mehr
Biochip, mit dem Prof. Dr. Andrea Robitzki u.a. Nervenzellen untersucht (Foto: Swen Reichhold/Universität Leipzig)

Alzheimer-ForschungDegenerierende Nervenzellen auf Biochips

Wie reagieren lebende, genetisch veränderte Nervenzellen mit einer krankhaften Degeneration auf Wirkstoffe, die für Medikamente gegen die Alzheimer-Krankheit getestet werden? Wie viel von diesem Therapeutikum ist nötig, um das Absterben der Nervenzelle hinauszuzögern?

…mehr

Neue Stellenanzeigen