Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Zell- und Mikrobiologie>

Zellanalyse und -manipulation mittels optischer Pinzette

Petrifilm-Lactobakterien-TestReduziert Aufwand und Arbeitszeit

Petrifilm-Test

Die 3M Petrifilm Platten zum Nachweis von Lactobakterien sind seit Herbst 2016 in Europa erhältlich. Das gebrauchsfertige Testmaterial kommt ohne zusätzliches Equipment aus, das üblicherweise für die Durchführung anaerober Inkubationen benötigt wird.

 

…mehr

Exzellenzcluster „Cells in Motion"Zellanalyse und -manipulation mittels optischer Pinzette

Zellen bilden Gewebe und Organe. Sie wandern von Ort zu Ort, und bei all diesen Prozessen spielen die Kräfte und mechanischen Eigenschaften der Zellen eine große Rolle. Forscherinnen und Forscher des Exzellenzclusters „Cells in Motion" der Westfälischen Wilhelms-Universität Münster (WWU) haben nun mit der Methode der holographischen optischen Pinzette die mechanischen Eigenschaften von Zellen in lebenden Zebrafischembryos untersucht.

Fluoreszierende Kügelchen (grün) im 24 Stunden alten Zebrafischembryo. Die Kügelchen wurden im Einzellstadium in den Embryo eingebracht und verteilten sich, ohne die Entwicklung zu beeinflussen. (Copyright: Hörner et al. / Journal of Biophotonics)

Dazu arbeiteten Zellbiologen und Physiker eng zusammen. Mit der auf Licht basierenden Technik konnten sie erstmals mehrere Bestandteile der Zellen gleichzeitig beeinflussen und Messungen durchführen. Die Studie ist aktuell in der Fachzeitschrift „Journal of Biophotonics" (online) erschienen.

Im Exzellenzcluster „Cells in Motion" beobachten die Zellbiologen um Prof. Dr. Erez Raz „Urkeimzellen", also die Vorläufer von Spermien und Eiern, bei ihrer Wanderung im sich entwickelnden Zebrafisch. Wie andere Zellen auch bewegt sich eine Keimzelle vorwärts, indem sie sich verformt und kleine Auswölbungen der Zellmembran in Wanderungsrichtung ausbildet.

Anzeige

Hierfür sind die mechanischen Eigenschaften der Zelle und ihrer Umgebung entscheidend. Diese mechanischen Eigenschaften sind bei der Entwicklung von Organismen, aber auch in Krankheitsfällen von Bedeutung, zum Beispiel, wenn Krebszellen wandern und Metastasen bilden. „Wenn eine Zelle sich teilt oder bei einer Erkrankung verändert, können sich auch die mechanischen Eigenschaften von Zellen verändern", sagt Florian Hörner, Erstautor der Studie und Doktorand am Institut für Zellbiologie.

Um diese physikalischen Eigenschaften zu untersuchen, brachte die Forschergruppe um Physikerin Prof. Dr. Cornelia Denz eine spezielle Methode ein: Sie nutzten die holographische optische Pinzette. Eine optische Pinzette basiert auf fokussiertem Laserlicht, mit dem kleinste Partikel in einer Zelle oder im Gewebe bewegt, verformt und festgehalten werden können. Der Laser wirkt wie eine „Pinzette" aus Licht. Um mehr als ein einzelnes Partikel gleichzeitig festzuhalten, kombinierten die Forscher die optische Pinzette mit holographischen Verfahren. Das bedeutet: Durch computerberechnete Hologramme wird der Laserstrahl so geformt, dass unter dem Mikroskop eine Vielzahl an einzelnen optischen Pinzetten entsteht.

Um die mechanischen Eigenschaften der Zelle während der Embryonalentwicklung zu untersuchen, injizierten die Wissenschaftler in einem frühen Entwicklungsstadium kleine Kunststoffkügelchen in Zellen von lebenden Zebrafischembryos. Mit der optischen Pinzette übten die Forscher Kraft auf die einen Mikrometer großen Kügelchen in den Zellen aus und bewegten sie so. Die Untersuchung ihrer Bewegung als Reaktion auf diese Kraft erlaubte es den Forschern, mechanische Eigenschaften der Zellen zu bestimmen. Darüber hinaus war es dank des holographischen Verfahrens möglich, an verschiedenen Orten gleichzeitig Kraft auszuüben – als würden mehrere Hände gleichzeitig verschiedene Strukturen innerhalb der Zellen verformen.

„Wir haben eine gute Grundlage gefunden, um in Zukunft vielen verschiedenen Fragestellungen hinsichtlich der mechanischen Eigenschaften von Zellen im lebenden Embryo nachgehen zu können, ohne in dessen Entwicklung einzugreifen", resümiert Florian Hörner. Den Forschern gelang es, eine vielseitige Methode aufzubauen, die zukünftig auch für ähnliche Untersuchungen in anderen Organismen genutzt werden kann. „Letztendlich wollen wir in der Lage sein, die biomechanischen Eigenschaften von Zellen zu bestimmen und zu manipulieren, die für ihr Bewegungsverhalten im lebenden Gewebe relevant sind", sagt Erez Raz.

Die Studie entstand in einem durch den WWU-Exzellenzcluster „Cells in Motion" geförderten Forschungsprojekt. Darüber hinaus wurde sie durch den von der Deutschen Forschungsgemeinschaft geförderten Sonderforschungsbereich TRR 61 „Multilevel Molecular Assemblies – Structure, Dynamics and Function" der WWU, den Europäischen Forschungsrat und den Deutschen Akademischen Austauschdienst unterstützt.

Originalpublikation:

Hörner F, Meissner R, Polali S, Pfeiffer J, Betz T, Denz C, Raz E. Holographic optical tweezers-based in vivo manipulations in zebrafish embryos. J Biophotonics 2017, DOI: 10.1002/jbio.201600226.

Anzeige

Weitere Beiträge zum Thema

Blutkörperchen

Blutkörperchen in AktionWenn rote Blutkörperchen „zappeln"

Wissenschaftler haben erstmals mit physikalischen Methoden nachgewiesen, wie sich rote Blutkörperchen bewegen. Ob die Zellen von äußeren Kräften bewegt werden oder aktiv „zappeln", darüber hatte es unter Forschern regelrechte Kämpfe gegeben.

…mehr
Zellen in Bewegung: Zellen formen und mikroskopieren

Zellen in BewegungZellen formen und mikroskopieren

Die Materialwissenschaftlerin Ljubomira Schmitt und der Biologe Tobias Meckel haben ein Gerät gerät entwickelt, mit dem sich Zellen ziehen und stauchen und parallel mikroskopieren lassen. Die Technik könnte Medikamententests verbessern und manchen Tierversuch erübrigen.

…mehr
Zilie

Die Antenne der ZelleMikromechanischen Eigenschaften von primären Zilien erforscht

Ein internationales Forscherteam unter der Leitung der Uni Göttingen hat die mikromechanischen Eigenschaften von primären Zilien erforscht. Diese antennenähnlichen Organellen dienen Arten von Zellen in höheren Lebewesen zur Erkennung von Umweltsignalen.

…mehr
Wanderung von Immunzellen

Wie Immunzellen aus Blutgefäßen wandernEntzündungsprozessen auf der Spur

Welche molekularen Mechanismen stecken dahinter, wenn Immunzellen bei Entzündungen aus dem Blutgefäß ins Gewebe wandern? Forscherinnen und Forscher des Exzellenzclusters „Cells in Motion" der Universität Münster haben neue Erkenntnisse darüber gewonnen.

…mehr
Bienenwabenförmiges Nanomesh: Bornitrid-Struktur aus Stickstoff (grün) und Bor (orange) auf Rhodium (grau); Wabenabstand 3,2 nm (Bild: Marcella Iannuzzi, UZH & Ari Seitsonen, ENS Paris)

Zwischen Haftreibung und AdhäsionKontaktwinkel elektrisch veränderbar

Physiker haben an der Universität Zürich ein System entwickelt, mit dem sie Adhäsion und Haftreibung eines Wassertropfens auf einer festen Oberfläche elektrisch hin und her schalten können. Zurückführen lässt sich dieser Effekt auf die Veränderung der Oberflächenbeschaffenheit im Nanometerbereich.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung