Materialforschung

KI-Agent unterstützt die Auswertung von Röntgendaten

Bei Hochdurchsatz-Röntgenbeugungsmessungen fallen riesige Datenmengen an. Mit Hilfe eines KI-Agenten können sie schneller nutzbar sein.

Bei der Suche nach aussichtsreichen neuen Materialien in Materialbibliotheken kann künstliche Intelligenz helfen, umfangreiche Röntgenbeugungsdaten schneller und besser zu analysieren. © Lehrstuhl Materials Discovery and Interfaces

Künstliche Intelligenz (KI) kann große Datenmengen, wie sie bei der Analyse der Eigenschaften potenzieller neuer Materialien entstehen, schneller analysieren als Menschen. Allerdings neigen solche Systeme auch angesichts von Unsicherheiten oft zu definitiven Entscheidungen. Ein internationales Forschungsteam hat einen Algorithmus so weiterentwickelt, dass er mit dem Menschen zusammenarbeitet und Entscheidungen unterstützt. So lassen sich vielversprechende neue Materialien schneller identifizieren. Das Team, darunter Forschende der Ruhr-Universität Bochum (RUB) berichtet in der Zeitschrift Nature Computational.

Für die Arbeiten kooperierte ein Team um Dr. Phillip M. Maffettone (mittlerweile am National Synchrotron Light Source II in Upton, USA) und Prof. Dr. Andrew Cooper vom Department of Chemistry and Materials Innovation Factory der University of Liverpool mit der Bochumer Gruppe um Lars Banko und Prof. Dr. Alfred Ludwig vom Lehrstuhl Materials Discovery and Interfaces sowie Yury Lysogorskiy vom Interdisciplinary Centre for Advanced Materials Simulation.

KI-Methoden nutzen

Für die Entdeckung neuer Materialien zum Beispiel für die Energiesysteme der Zukunft spielt eine effiziente Analyse von Röntgenbeugungsdaten (XRD) eine entscheidende Rolle. Denn die Kristallstruktur-Analyse potenzieller Kandidaten neuer Materialien kann helfen herauszufinden, für welche Einsatzmöglichkeiten sie sich eignen könnten. XRD-Messungen wurden in den vergangenen Jahren durch Automatisierung bereits deutlich beschleunigt und liefern bei der Messung von Materialbibliotheken große Datenmengen. „Allerdings sind XRD-Analysetechniken größtenteils immer noch manuell, zeitaufwändig, fehleranfällig und nicht skalierbar“, so Prof. Dr. Alfred Ludwig. „Um künftig mittels autonomer Hochdurchsatzexperimente neue Materialien schneller entdecken und optimieren zu können, braucht es neue Methoden.“

Anzeige

In der Veröffentlichung zeigt das Team, wie mittels künstlicher Intelligenz die XRD-Datenauswertung schneller und besser werden könnte: Die Lösung ist ein KI-Agent namens Crystallography Companion Agent, kurz XCA, der mit den Forschenden zusammenarbeitet. XCA kann autonome Phasenidentifikationen aus XRD-Daten durchführen, während diese gemessen werden. Der Agent eignet sich sowohl für organische als auch anorganische Materialsysteme. Ermöglicht wird dies durch die großskalige Simulation von physikalisch korrekten Röntgenbeugungsdaten, mit denen der Algorithmus trainiert wird.

Expertendiskussion wird simuliert

Eine Besonderheit des Agenten, den das Team für die aktuelle Aufgabe angepasst hat, ist zudem, dass er die „Selbstüberschätzung“ traditioneller neuronaler Netzwerke überwindet: Diese liegt darin, dass sie eine finale Entscheidung abgeben, auch wenn die Datenlage keine eindeutige Aussage zulässt. Ein Wissenschaftler hingegen würde seine Unsicherheit mitteilen und Ergebnisse mit anderen Forschenden diskutieren. „Diese Entscheidungsfindung in der Gruppe wird hier durch ein Ensemble von neuronalen Netzwerken simuliert, ähnlich einer Abstimmung unter Experten“, erläutert Lars Banko. Beim XCA bildet ein Ensemble aus neuronalen Netzen sozusagen das Expertengremium, welches eine Empfehlung an die Wissenschaftler abgibt. „Dies wird ohne manuelle, vom Menschen markierte Daten erreicht und ist robust gegenüber vielen Quellen der experimentellen Komplexität“, so Banko.

XCA ist auch auf andere Formen der Charakterisierung erweiterbar wie zum Beispiel die Spektroskopie. „Diese Entwicklung ergänzt die jüngsten Fortschritte in der Automatisierung und im autonomen Experimentieren und ermöglicht so einen wichtigen Schritt in der beschleunigten Entdeckung neuer Materialien“, ergänzt Professor Alfred Ludwig.

Förderung

Die Arbeiten wurden finanziell unterstützt vom Engineering and Physical Sciences Research Council (Grant-Nummer EP/N004884/1), dem BNL-Laboratory-Directed-Research-and-Development-Project 20-032 „Accelerating materials discovery with total scattering via machine learning“, dem Leverhulme Trust, der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs/Transregios SFB-TR 87. Diese Forschung nutzte die PDF (28-ID-1) Beamline und die Ressourcen der National Synchrotron Light Source II, einer Nutzereinrichtung am Office of Science des US-amerikanischen Energieministeriums (DOE), die für das DOE Office of Science vom Brookhaven National Laboratory unter der Vertragsnummer DE-SC0012704 betrieben wird.

Publikation
Phillip M. Maffettone, Lars Banko, Peng Cui, Yury Lysogorskiy, Marc A. Little, Daniel Olds, Alfred Ludwig, Andrew I. Cooper: Crystallography companion agent for high-throughput materials discovery, in: Nature Computational Science, 2021, DOI: 10.1038/s43588-021-00059-2

Quelle: Ruhr-Universität Bochum

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite