Labo Online - Analytic, Labortechnik, Life Sciences

Superauflösende Mikroskopie-TechnikTLR4-Dimere: Türsteher der Immunzellen arbeiten im Team

Jede Zelle hat an ihrer Oberfläche Rezeptoren, die ähnlich wie Türsteher auf Signale von außen reagieren. So können die Zellen des angeborenen Immunsystems mit ihren „Toll Like Rezeptoren“ (TLR) zwischen Freund und Feind unterscheiden. Dabei arbeiten oft zwei Türsteher zusammen, wie Forscher der Goethe-Universität zusammen mit britischen Kollegen mithilfe einer neuen superauflösenden optischen Mikroskopie-Technik herausgefunden haben.

sep
sep
sep
sep
Kristallstruktur eines Dimers im rechten Bild

Als die deutsche Nobelpreisträgerin Christiane Nüsslein-Volhard in den 1990er Jahren bei der Fruchtfliege (Drosophila melanogaster) Rezeptoren entdeckte, die Signale von der Zelloberfläche in eine Immunantwort umwandeln, war sie begeistert. Sie gab den Rezeptoren den Spitznamen „toll“, der sich inzwischen in der Literatur etabliert hat. Seitdem sind ähnliche Rezeptoren (engl. „Toll Like Receptors“) auch bei Tieren und Menschen entdeckt worden. Sie erkennen Bakterien, Viren und Pilze und stellen damit sicher, dass unser Körper angemessen auf Infektionen reagiert. Deregulierte TLRs können dagegen zu chronischen Entzündungen und Krebs führen.

Anzeige

Bisherige Experimente deuteten darauf hin, dass TLRs durch ein chemisches Signal aktiviert werden, so dass sich je zwei Proteine zu Dimeren zusammenlagern. Diese sogenannte „Dimerisation“ scheint eine entscheidende Rolle im Schicksal einer Zelle zu spielen: Sie kann darüber entscheiden, ob die Zelle überlebt, stirbt oder sich im Körper fortbewegt. Weil die Dimerisation auf einer molekularen Ebene stattfindet, die mit konventionellen Mikroskopie-Verfahren nicht zugänglich ist, waren Forscher bisher auf indirekte Messverfahren angewiesen. Allerdings waren diese anfällig für Experimentierfehler und führten zu unterschiedlichen Ergebnissen. Das hat sich nun dank der neuen superauflösenden optischen Mikroskopie-Technik geändert.

In der kommenden Ausgabe von „Science Signaling“ beschreiben die Arbeitsgruppen von Prof. Mike Heilemann von der Goethe-Universität und von Dr. Darius Widera und Dr. Graeme Cottrell von der englischen University of Reading, wie sie die Organisation des Rezeptors TLR4 auf der Zelloberfläche in molekularer Auflösung untersucht haben. Sie benutzten zunächst ein superauflösendes Mikroskop, das ungefähr 100-mal besser auflöst als ein gewöhnliches Fluoreszenzmikroskop. Da dies immer noch nicht ausreichte, um einzelne Rezeptor-Moleküle in einem winzigen Protein-Dimer sichtbar zu machen, entwickelten die Forscher eine verfeinerte Analyse des optischen Signals. Auf diese Weise konnten sie weiter in die superauflösenden Bilder hinein zoomen und untersuchen, unter welchen Bedingungen TLR4 ein Monomer oder ein Dimer formt. Ebenso konnten die Forscher feststellen, welche chemischen Signale von unterschiedlichen Pathogenen die Muster der Rezeptoren modulieren.

Durch ihren Ansatz hoffen die Forscher künftig besser zu verstehen, wie die Dimerisation von TLRs sich auf die Entscheidung zwischen Tod und Leben einer Zelle auswirkt. Weiterhin könnte genauer bestimmt werden, wie auf TLRs abzielende Wirkstoffe das Verhalten von Krebszellen beeinflussen. „Es ist auch denkbar, dass wir mit diesem Ansatz grundlegende biologische Prozesse, die das Immunsystem in Gesundheit und Krankheit regulieren, künftig besser verstehen. Gleichzeitig ist dieser mikroskopische Ansatz auch auf andere Membranproteine und viele ähnliche Fragen anwendbar”, erklärt Prof. Mike Heilemann vom Institut für Physikalische und Theoretische Chemie der Goethe-Universität.

Publikation:
Carmen L. Krüger, Marie-Theres Zeuner, Graeme S. Cottrell, Darius Widera, Mike Heilemann: Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization, Science Signaling, doi: 10.1126/scisignal.aan1308.

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Claus Küpper, Frederik Großerüschkamp, Angela Kallenbach-Thieltges und Klaus Gerwert entwickeln neue Verfahren zur Krebsdiagnose. (RUB, Marquard)

BiophysikMarkerfreies Verfahren zur Schnelldiagnose von Krebs

Wissenschaftler der Ruhr-Universität Bochum konnten durch Einsatz von Lasertechnik die Messdauer der IR-Mikroskopie von einem Tag auf wenige Minuten verkürzen. Das IR-Mikroskop gekoppelt mit bioinformatischer Bildanalyse erkennt Krebsgewebe markerfrei und automatisch.

…mehr
Mikroskop alpha300 Ri von Witec

Analytica 2018 – Halle A2, Stand 402Witec präsentiert neues invertiertes konfokales Raman-Mikroskop

Die innovative und leistungsstarke 3D-Raman-Imaging-Technologie von Witec ist jetzt in dem invertierten Mikroskop alpha300 Ri erhältlich.

…mehr
Mikroskopaufnahme von Staphylococcus aureus

BiohysikBeharrliche Winzlinge: Wie krankmachende Bakterien mit Proteinen an den Zielmolekülen ihres Wirtes "kleben"

LMU-Forscher haben den physikalischen Mechanismus entschlüsselt, mit dem sich ein weit verbreiteter Krankheitserreger an sein Zielmolekül im menschlichen Körper bindet. Damit legt die Studie Grundlagen z.B. für die Entwicklung neuartiger Therapien bei Infektionen mit Staphylokokken. 

…mehr
Mikroskopische Aufnahme einer Zelle mit Mitochondrien, Tubulin und Aktin

Wissenschaftliche MikroskopieNachweisgrenze der konfokalen Bildgebung neu definiert

Leica Microsystems stellt mit Lightning ein neues Detektionskonzept für die wissenschaftliche Bildgebung vor. Das TCS SP8 mit neuem "Lightning" extrahiert die maximale Informationen aus jeder Probe.

…mehr
atomaren Beugungsbilder

Sichtbare ElektronenbewegungGeschehnisse im Atom in Echtzeit beobachten

LMU-Physiker haben eine Art Elektronenmikroskop entwickelt, das die Ausbreitung von Licht durch Raum und Zeit sowie die dadurch ausgelösten Bewegungen von Elektronen in Atomen sichtbar macht.

…mehr
Anzeige

Mediadaten 2018

LABO Einkaufsführer

Produktkataloge zum Blättern


Hier finden Sie aktuelle Blätter-Kataloge von Herstellern aus der Branche. Einfach durchblättern oder gezielt nach Stichwort suchen!

Anzeige

LABO Web-Guide 2016 als E-Paper

Web-Guide 2016


- Stichwortregister

- Firmenscreenshots

-Interessante Webadressen aus dem Labor

Anzeige

Neue Stellenanzeigen

Jetzt den LABO Newsletter abonnieren


Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

LABO bei Facebook und Twitter