Labo Online - Analytic, Labortechnik, Life Sciences
Home> Analytik> Umweltanalytik + Reinstwasser>

Wassernutzung: Wie Pflanzen Wasser effizienter nutzen

Wie Pflanzen Wasser effizienter nutzenMehr Ertrag pro Tropfen Wasser

Die Menschheit muss ihre Nahrungsproduktion steigern bei begrenzter Wasserverfügbarkeit. Bereits heute ist die Wassernutzung nicht nachhaltig. Da Pflanzen bei der Photosynthese viel Wasser verlieren, ist dies weltweit der größte begrenzende Faktor für bessere Ernten.

sep
sep
sep
sep
Thermogramm

Wissenschaftler der Technischen Universität München (TUM) haben einen Lösungsansatz: Sie konnten Pflanzen dazu bringen, Wasser effizienter zu nutzen ohne ihr Wachstum zu reduzieren. Zu Hilfe kam ein Sparmodus, der es Pflanzen ermöglicht, Kohlendioxid mit weniger Wasserverlust aufzunehmen.

Dieser Wassersparmodus wird von Pflanzen bei Wassermangel aktiviert. TUM-Wissenschaftler konnten nun das aktivierende Signal dafür identifizieren und den Sparmodus permanent einschalten, was sie in der aktuellen Ausgabe von PNAS (Proceedings of the National Academy of Sciences of the USA) vorstellen. Ein möglicher Lösungsansatz für das Problem, dass weltweit etwa 70 % des genutzten Wassers im Agrarsektor verbraucht werden.

Anzeige

Aufgrund nicht nachhaltiger Wasserentnahme, vor allem für die Landwirtschaft, sinken die Grundwasserspiegel der Kontinente. Pro Jahr werden netto etwa 200 Kubikkilometer Wasser – das entspricht 65 mal der Wassermenge des Starnberger Sees – vom Land in die Meere verlagert und tragen damit zu etwa 30 % zum Anstieg der Meeresspiegel bei. Laut Weltagrarbericht ist der Wasserbedarf heute dreimal so hoch wie noch vor 50 Jahren. Die Zukunftsaussichten: Bis zum Jahr 2050 soll der Wasserverbrauch in der Landwirtschaft nochmals um ein weiteres Fünftel steigen.

Rund 80 % des von den Landmassen in die Atmosphäre abgegebenen Wassers verdunsten nicht direkt, sondern das Wasser wird durch Pflanzen über ihre Wurzelaufnahme und Blatttranspiration mobilisiert. Es ist deshalb ein zentrales Ziel, Kulturpflanzen mit verbesserter Wassernutzung zu finden, um den hohen Wasserverbrauch der Landwirtschaft zu drosseln und die zukünftige Nahrungssicherheit zu gewährleisten.

Wie die Pflanzen den Gasaustausch regulieren
Über die Spaltöffnungen des Blattes können Pflanzen den Gasaustausch von Kohlendioxid und Wasserdampf steuern. Ein Schließen der Spaltöffnungen verringert den Wasserverlust, behindert aber auch die CO2-Aufnahme. Je nach Temperatur und Luftfeuchtigkeit kostet die Aufnahme eines CO2-Moleküls die Pflanze etwa 500 bis 1000 Moleküle Wasser. Pflanzen vermögen jedoch unter Wassermangel die interne CO2-Konzentration zu verringern und dadurch den CO2-Einstrom in die Blätter wirkungsvoller zu machen.

„Die Wasserkosten der CO2-Aufnahme können Pflanzen halbieren“, sagt Prof. Erwin Grill vom Lehrstuhl für Botanik der TUM – „jedoch schalten Pflanzen nur bei Wasserknappheit in diesen Wassersparmodus“. In Feldkulturen würden Pflanzen mit einem ständig aktivierten Wassersparmodus dem Boden Feuchtigkeit bewahren, die später bei Trockenheit für Wachstum und Überleben der Kulturen zur Verfügung stünde.

Pflanzenhormon aktiviert den Wassersparmodus
Wie das Team der Wissenschaftler herausfand, ist das Pflanzenhormon namens Abscisinsäure verantwortlich für das Umschalten in den Wassersparmodus. Das Pflanzenhormon wird bei Wassermangel vermehrt gebildet. Es gibt in der Modellpflanze Arabidopsis, auch Ackerschmalwand genannt, 14 für dieses Hormonsignal zuständige Pflanzenrezeptoren. Die Münchner Forscher konnten zeigen, dass eine vermehrte Bildung mancher dieser Rezeptoren, die Pflanzen schon bei guter Wasserversorgung in den Wassersparmodus wechseln lässt. Drei dieser Rezeptoren beeinträchtigten das Pflanzenwachstum nicht. Bis zu 40 % des zuvor benötigten Wassers konnte bei unveränderter Wuchsleistung der Pflanzen eingespart werden.

Erste Versuche belegen Wasserspareffekte auch unter simulierten Feldbedingungen
„Im weiteren Schritt gilt es nun zu klären, ob unter Feldbedingungen diese Einspareffekte auch zu beobachten sind“, sagt Prof. Hans Schnyder vom Lehrstuhl für Grünlandlehre der TUM und Mitautor der Studie. Erste Simulationsversuche in Klimakammern des Helmhotz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, unterstützen diese Annahme.

„Ob auch die für die Ernährung wichtigen Pflanzen wie Weizen, Mais und Reis mehr Biomasse bei der gleichen Wassermenge mit diesem Mechanismus erzeugen können, bleibt zu zeigen“, sagt Prof. Grill. „Wir sind aber zuversichtlich, denn die beteiligten Mechanismen sind in allen Pflanzen zu finden. Sollte der Transfer von der Modellpflanze Arabidopsis in diese Kulturpflanzen gelingen, wäre ein wichtiger Schritt zur zukünftigen Sicherung der Ernährung getan.“

Publikation:
Zhenyu Yang, Jinghui Liu, Stefanie V. Tischer, Alexander Christmann, Wilhelm Windisch, Hans Schnyder, and Erwin Grill: Leveraging abscisic acid receptors for efficient water use in Arabidopsis, PNAS 2016. DOI: 10.1073/pnas.1601954113.

Kontakt:Prof. Dr. Erwin Grill
Technische Universität München
Lehrstuhl für Botanik
E-Mail: erwin.grill@mytum.de
http://www.botanik.wzw.tum.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Drohne

Projekt „Cropwatch“Drohnen sollen Pflanzenwachstum ausspähen

Wie gut wachsen die Kulturen auf dem Feld? Leiden die Pflanzen unter Krankheiten oder Stress? Wurde zu wenig oder zu viel gedüngt? Daten zu solchen Fragen sollen künftig automatisch erfasst werden – mit Kameras am Traktor und an einer Drohne.

…mehr
Herkömmlicher Baumtabak und lachsfarbener Baumtabak

Horizon 2020: Biofabrik TabakpflanzeTabakpflanzen können mehr

Tabakpflanzen können viel mehr als der Ausgangsstoff für die Produktion gesundheitsschädlicher Zigaretten sein. Wissenschaftler haben vielversprechende neue Züchtungsmethoden entdeckt, die dazu genutzt werden könnten Tabakblätter in pflanzliche Biofabriken zu verwandeln. 

…mehr
Prof. Dr. Arp Schnittger

GenomverdopplungMechanismus zur Verdopplung von Pflanzengenomen entdeckt

Eine Störung der Zellteilung löst bei der Ackerschmalwand (Arabidopsis thaliana) eine Genomverdopplung aus, Polyploidisierung genannt. Entwicklungsbiologen der Universität Hamburg haben den Vorgang erstmals detailliert analysiert.

…mehr
Pflanzengenome: Mechanismus zur Verdoppelung entdeckt

PflanzengenomeMechanismus zur Verdoppelung entdeckt

Polyploidisierungen könnten Pflanzen die Anpassung etwa an den Klimawandel erleichtern. Die genaue Kenntnis der zugrundeliegenden Prozesse birgt außerdem große Potenziale für die Züchtung von Nutzpflanzen. Dazu untersucht ein Hamburger Forschungsverbund die Genomverdoppelungen im Rahmen der Hybridbildung, also der Kreuzung zweier Arten.

 

…mehr
Pflanzenzüchtung: Getreide, das der Dürre trotzt

PflanzenzüchtungGetreide, das der Dürre trotzt

Ein internationales Konsortium unter der Leitung des „International Crops Research Institute for the Semi-Arid Tropics“ hat unter Beteiligung eines Forschungsteams um den Systembiologen Wolfram Weckwerth (Universität Wien) das Genom der trockenresistenten Getreidepflanze Pennisetum glaucum (Perlhirse) sequenziert. Sie ist in der Lage, trotz großer Trockenheit und hohen Temperaturen bis zu 42 °C Erträge zu liefern.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung