Mikroskopischer Röntgenblick auf schnelle Änderungen in Materialien

Röntgenmikroskop macht Fluktuationen sichtbar

Mikroskopie mit Röntgenstrahlen erfordert eine extrem hohe Qualität der Strahlung. Auch Gerät und Probe dürfen sich während der Aufnahme nicht im Geringsten bewegen. Forscher der Technischen Universität München und des Paul Scherrer Instituts in Villigen (Schweiz) haben nun eine Methode entwickelt, mit der man diese Einschränkungen lockern kann. Mit ihr lassen sich sogar Fluktuationen im Material abbilden. Über ihre Ergebnisse berichtet jetzt das Fachmagazin Nature.

Seit mehr als 100 Jahren heißt es bei jeder Röntgenaufnahme: Stillhalten! Will man Nanostrukturen wie den Aufbau biologischer Zellen, die poröse Struktur von Zement oder Speicherfelder magnetischer Datenträger abbilden, müssen Probe und Röntgenmikroskop daher extrem vibrationsarm sein. Zusätzlich muss mithilfe spezieller Filter aus der ankommenden Röntgenstrahlung der Anteil mit den richtigen Eigenschaften ausgewählt werden - zum Beispiel die richtige Wellenlänge.

Beiträge verschiedener Wellenlängen getrennt

Aufbau des Verfahrens: Während die Probe mit Nanometer-Präzision durch den Strahl bewegt wird, fängt der Detektor die Streubilder auf, aus denen das Bild der Probe rekonstruiert wird.

Andreas Menzel, Wissenschaftler am Paul Scherrer Institut und Pierre Thibault von der Technischen Universität München haben nun eine Analysemethode entwickelt, die trotz Vibrationen oder Fluktuationen zuverlässige Bilder produziert. Die Methode basiert auf einer Technik namens "Ptychographie". Sie wurde in den 1960er Jahren für die Elektronenmikroskopie entwickelt. Die Ergebnisse der Forscher ermöglichen es nun, in einem Bild Effekte voneinander zu unterscheiden, die von den Lichtanteilen verschiedener Wellenlängen stammen.

Anzeige

Fluktuationen sichtbar gemacht

Das wahrscheinlich bedeutsamste Ergebnis der Arbeit ist, dass damit eine ganze Klasse von Objekten abgebildet werden kann, die man bisher kaum untersuchen konnte. "Wir können nicht nur Vibrationen im Mikroskop kompensieren", sagt Andreas Menzel. "Wir können sogar Fluktuationen der Probe selber charakterisieren, auch wenn sie viel zu schnell sind, als dass wir sie mit einzelnen Momentaufnahmen festhalten könnten."

"Um uns zu vergewissern, dass die Bilder, die wir produzierten, tatsächlich die Proben und ihre Dynamik genau wiedergaben", sagt Pierre Thibault, "führten wir Computersimulationen durch. Sie bestätigten, dass sowohl Effekte des Instruments als auch der Proben selbst, wie zum Beispiel Ströme, Schaltvorgänge oder bestimmte Quantenzustände, charakterisiert werden können."

Mikroskopischer Blick ins Innere

Die neue Methode verbindet die Charakterisierung dynamischer Zustände mit hochauflösender Röntgenmikroskopie. Eine mögliche Anwendung besteht darin, die wechselnde Magnetisierung einzelner Bits in magnetischen Speichermedien mit hoher Speicherdichte zu untersuchen. Sichtbar gemacht werden können auch Wechselwirkungen einzelner magnetischer Bits oder ihre thermischen Fluktuationen, die letztlich die Lebensdauer magnetischer Datenspeicherung bestimmen.

"Neben dem Einsatz in bildgebenden Verfahren", erläutert Pierre Thibault, "hat unsere Analyse aber auch eine grundlegende Verwandtschaft zu anderen Fachbereichen offenbart. Mikroskopie und Wissenschaftsdisziplinen, wie zum Beispiel Quanteninformatik, die bisher als unabhängig galten, können hierbei voneinander profitieren."

Publikation:
Reconstructing state mixtures from diffraction measurements; Pierre Thibault & Andreas Menzel,
Nature, 7. February 2013, DOI: 10.1038/nature11806

Links:
Website von Pierre Thibault (Englisch): http://users.ph.tum.de/gu74hih/
Website CXS-Arbeitsgruppe am PSI (Englisch): http://www.psi.ch/coherent-x-ray-scattering/coherent-x-ray-scattering-group

Kontakt:
Dr. Pierre Thibault
Technische Universität München
Physik-Department, Lehrstuhl für Angewandte Biophysik (E 17)
85747 Garching, Germany
E-Mail: pierre.thibault@tum.de (Sprachen: Französisch, Englisch)

Dr. Andreas Menzel
Paul Scherrer Institut
Labor für Makromoleküle und Bioimaging
5232 Villigen PSI, Schweiz
E-Mail: andreas.menzel@psi.ch (Sprachen: Deutsch, Englisch)

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige

Raman-Imaging

Mit aktiver Fokus-Stabilisierung

Mit neuen Raman-Imaging-Optionen bietet Witec seine aktuelle Software Suite Five an. Neben verbesserten und neuen Funktionen zur Aufnahme und Auswertung der Daten beinhaltet Suite Five jetzt eine Steuerung für die aktive Fokus-Stabilisierung, die...

mehr...

Imaging

Segmentierung korrelativer Mikroskopiedaten

Die Zeiss ZEN Intellesis-Plattform ermöglicht eine integrierte Segmentierung mikroskopischer 2D- und 3D-Datensätze für den Routineanwender. Sie ist für alle Licht-, Konfokal-, Röntgen-, Elektronen- und Ionenmikroskope von Zeiss erhältlich.  

mehr...
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...