Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik>

Atomare Anregung in starken Laserfeldern

Terahertz-KalorimetrieWie sich Wasser in der Umgebung von gelösten Molekülen verhält

Hat Idee des Terahertz-Kalorimeters realisiert: Martina Havenith

Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, mit der sie Veränderungen in der Energie und Struktur von Wassermolekülen in der Umgebung gelöster Moleküle erfassen können. 

…mehr

QuantenphysikErklärung ultraschneller atomarer Anregung in starken Laserfeldern

Dass Licht entweder als elektromagnetische Welle oder als ein Strom von „Energiequanten" (Photonen) aufgefasst werden muss, durchzieht die Geschichte der Quantenphysik wie ein roter Faden. Im Falle der Wechselwirkung von intensiver kurzpulsiger Laserstrahlung findet dieser Dualismus seine Entsprechung in den anschaulichen Bildern, die zur Beschreibung von Ionisation und Anregung von Atomen herangezogen werden: das Multiphotonenbild und das Tunnelbild.

sep
sep
sep
sep
Ausbeute an angeregten Atomen als Funktion der Laserintensität. Bei einer Laserintensität von 200 TW/cm², in der Nähe des "channel closings" für 6 Photonen, zeigt sich eine starke resonante Erhöhung der Anregung um einen Faktor 100. Für die Argondaten ist die theoretische Vorhersage gezeigt (rote gestrichene Kurve), die in exzellenter Übereinstimmung mit den experimentellen Daten ist.

In einer kombinierten theoretischen und experimentellen Studie zur ultraschnellen Anregung von Atomen in intensiven Laserfeldern gelang es Forschern des Max-Born-Institutes, die beiden vorherrschenden und scheinbar entgegengesetzten Erklärungsbilder für die Wechselwirkung von Materie mit intensiver Laserstrahlung auf einen zugrunde liegenden nichtlinearen Prozess zurückzuführen und aufzuzeigen, wie beide Bilder ineinander überführt werden können. Die Studie ist in der Fachzeitschrift Physical Review Letters erschienen und von den Editoren für ihre Bedeutung, Innovation und Breitenwirkung als Editors' Suggestion ausgezeichnet worden. Neben ihrer grundlegenden Aussage und Bedeutung zeigt die Arbeit verbesserte und neue Wege zur genauen Bestimmung der Laserintensität und zur laserintensitätsabhängigen Steuerung der kohärenten Zustandsbesetzung atomarer Niveaus auf.

Anzeige

Obwohl mit dem Keldysh-Parameter, der bereits in den 1960er Jahren durch den namengebenden russischen Physiker eingeführt wurde, eine klare Unterscheidung zwischen dem Multiphotonen- und Tunnelbild vorgenommen wurde, ist es eine offene Frage geblieben, ob, insbesondere bei der Beschreibung der Anregung von Atomen durch intensive Laserfelder, die beiden scheinbar unvereinbaren Ansätze ineinander überführt werden können.

Der Multiphotonencharakter äußert sich z.B. im Auftreten resonanter Erhöhungen in der Anregung, sobald ein ganzzahliges Vielfaches der Photonenenergie der Anregungsenergie atomarer Zustände entspricht. Man muss jedoch berücksichtigen, dass sich die atomaren Niveaus mit zunehmender Laserintensität zu höheren Energien verschieben. Das führt dazu, dass auch bei festgehaltener Frequenz der Laserstrahlung resonante Effekte durch eine Erhöhung der Laserintensität auftreten. Diese erfolgen periodisch, immer dann, wenn die Energieverschiebung der Niveaus um eine Photonenenergie zugenommen hat. Diese Bereiche werden als channel closing bezeichnet (Abschluss eines Multiphotonenprozesses mit fester Photonenzahl), da gleichzeitig mit der erhöhten Anregung die Ionisation unterdrückt wird.

Im Tunnelbild wird das Laserfeld als elektromagnetische Welle betrachtet, von der nur das oszillierende elektrische Feld berücksichtigt wird. Anregung kann dabei als ein Prozess verstanden werden, bei dem das gebundene Elektron zunächst durch einen Tunnelprozess in der Nähe des Maximums eines Feldzyklus instantan freigesetzt wird. Das Elektron nimmt aber in vielen Fällen nicht genügend Driftenergie aus der Oszillation im Laserfeld auf, um sich am Ende des Laserpulses aus dem Coulombfeld seines Rumpfions zu befreien, was zur Ionisation des Atoms führen würde. Stattdessen findet es sich in einem angeregten Rydberg-Zustand wieder. Im Tunnelbild sind keine resonanten Effekte in der Anregung möglich, da das Laserfeld für den Tunnelprozess als statisch angenommen wird und dadurch die Frequenz des Lichtes zunächst unerheblich ist.

In der Studie wurde nun erstmalig die Ausbeute an angeregten Argon- und Neonatomen als Funktion der Laserintensität sowohl im Multiphotonen- als auch im Tunnelbereich direkt gemessen. Im Multiphotonenbereich wurden ausgeprägte resonante Erhöhungen in der Anregungswahrscheinlichkeit detektiert, insbesondere in der Nähe der regelmäßigen channel closings, während im Tunnelbereich die Anregungswahrscheinlichkeit keine resonanten Strukturen mehr zeigt. Allerdings konnte Anregung auch bei hohen Laserintensitäten jenseits der Intensitätsschwelle zur vollständigen Ionisation beobachtet werden.

Die numerische Lösung der zeitabhängigen Schrödinger-Gleichung zur Beschreibung der untersuchten Atome im starken Laserfeld führte in beiden Bereichen zu einer exzellenten Übereinstimmung der Theorie mit den experimentellen Daten. Eine genauere Analyse der Ergebnisse zeigt, dass man die beiden Bilder als eine komplementäre Beschreibung im Frequenz- und Zeitraum von ein und demselben nichtlinearen Prozess ansehen kann. Im Zeitbild betrachtet kann man annehmen, dass in den Maxima der Feldzyklen periodisch Elektronenwellenpakete erzeugt werden. Im Multiphotonenbereich zeigt sich, dass diese Wellenpakete hauptsächlich im Laserpulsmaximum erzeugt werden und nur dann genau konstruktiv interferieren, wenn die Intensität in der Nähe der channel closings liegt. Damit ergeben sich reguläre Erhöhungen in der Anregungswahrscheinlichkeit jeweils quasi im Abstand der Photonenenergie. Im Tunnelbereich werden die Wellenpakete zwar auch periodisch bei den Maxima der Feldzyklen erzeugt, allerdings hauptsächlich im ansteigenden Teil des Laserpulses , so dass sie irregulär interferieren, was zu einem irregulären Verhalten in der Anregungswahrscheinlichkeit führt. Diese weniger ausgeprägten schnellen Änderungen werden im Experiment nicht aufgelöst und daher ein glattes Anregungsspektrum detektiert.

Originalpublikation:

Phys. Rev. Lett. 118, 013003 (2017) doi:10.1103/PhysRevLett.118.013003: „Unified Time and Frequency Picture of Ultrafast Atomic Excitation in Strong Laser Fields". H. Zimmermann, S. Patchkovskii, M. Ivanov, and U. Eichmann.

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Physiker testen mit einem Interferometer, ob die Standard-Quantenmechanik korrekt oder eine komplexere Theorie notwendig ist.

QuantenmechanikAuf der Suche nach Abweichungen von der Standardtheorie

Auf der Suche nach Abweichungen von der Standardtheorie der Quantenmechanik testeten Physiker, ob die Quantenmechanik ein noch raffinierteres mathematisches Regelwerk benötigt. 

…mehr
schwarze Diamanten

QuantenspeicherQuantenphysikalisch gekoppelte Diamanten

Atomare Fehler in Diamanten können als Quantenspeicher verwendet werden. An der TU Wien gelang es nun erstmals, Defekte unterschiedlicher Diamanten quantenphysikalisch zu koppeln. Diamanten mit winzigen Fehlern könnten für die Zukunft der Quantentechnologie eine große Rolle spielen. 

…mehr
Kryostat

Neuartige QuantenlichtquelleLichtteilchen im Doppelpack

Die Quantenphysik ist unter anderem deshalb so schwierig zu verstehen, weil sich die entsprechende Forschung meist in einem Mikrokosmos aus einzelnen Atomen, Elektronen und Photonen abspielt – also nicht greifbar für das menschliche Auge.

…mehr
Potentialtöpfe

Quantenphysikalisches ModellsystemExperiment mit ultrakalten Atomen reproduziert

Ein Modellsystem, das ein besseres Verständnis der Vorgänge in einem quantenphysikalischen Experiment mit ultrakalten Atomen ermöglicht, haben zwei Wissenschaftler der Universität Heidelberg entwickelt.

…mehr
Quanten-Bits

QuantenkommunikationWie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung