Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik> Elementare Physik in einem einzigen Molekül

Terahertz-KalorimetrieWie sich Wasser in der Umgebung von gelösten Molekülen verhält

Hat Idee des Terahertz-Kalorimeters realisiert: Martina Havenith

Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, mit der sie Veränderungen in der Energie und Struktur von Wassermolekülen in der Umgebung gelöster Moleküle erfassen können. 

…mehr

Intermolekularer MagnetismusElementare Physik in einem einzigen Molekül

sep
sep
sep
sep
Intermolekularer Magnetismus: Elementare Physik in einem einzigen Molekül

Einem Physiker-Team ist ein außergewöhnliches Experiment gelungen: Sie konnten nachweisen, wie Magnetismus - der sich gemeinhin als Kraftwirkung zwischen zwei magnetisierten Objekten äußert - auch innerhalb eines einzigen Moleküls wirkt. Diese für die Grundlagenforschung sehr bedeutsame Entdeckung liefert den Wissenschaftlern ein neues Werkzeug, Magnetismus als elementares Phänomen der Physik besser zu verstehen. Ihre Ergebnisse haben die Forscher nun in der Fachzeitschrift Nature Nanotechnology veröffentlicht (doi: 10.1038/nnano.2013.133).

Die kleinste Einheit eines Magneten ist das magnetische Moment eines einzelnen Atoms oder Ions. Koppelt man zwei solcher magnetischer Momente zusammen, ergeben sich zwei Möglichkeiten: Entweder die magnetischen Momente addieren sich zu einem stärkeren Moment - oder sie kompensieren einander und der Magnetismus verschwindet. Quantenphysikalisch korrekt spricht man von einem Triplett oder einem Singulett. Ein Forscherteam um Prof. Mario Ruben vom Karlsruher Institut für Technologie und Prof. Heiko B. Weber von der Friedrich-Alexander-Universität Erlangen-Nürnberg wollten testen, ob man den Magnetismus eines Paars magnetischer Momente in einem einzelnen Molekül elektrisch messen kann.

Dafür hatte die Arbeitsgruppe von Mario Ruben ein Molekül aus zwei Kobalt-Ionen für das Experiment maßgeschneidert. Heiko B. Weber und sein Team haben das Molekül in Erlangen in einem sogenannten Einzelmolekülkontakt untersucht. Dabei bringt man zwei Metallelektroden so nahe zusammen, dass das Molekül - dessen Länge etwa 2 nm beträgt - über viele Tage hinweg dazwischen stabil gehalten wird, während gleichzeitig der Strom durch den Kontakt gemessen werden kann. Diesen Experimentaufbau haben die Wissenschaftler dann unterschiedlichen - bis hin zu sehr tiefen -Temperaturen ausgesetzt.

Es zeigte sich, dass der Magnetismus so gemessen werden kann: Der magnetische Zustand innerhalb des Moleküls wurde als Kondo-Anomalie sichtbar - so nennt sich ein Effekt, der den elektrischen Widerstand zu tiefen Temperaturen hin schrumpfen lässt. Er tritt nur dann auf, wenn tatsächlich Magnetismus wirkt - und dient somit als Nachweis. Zugleich gelang es den Forschern, diesen Kondo-Effekt mit der angelegten Spannung an- und auszuschalten. Eine genaue theoretische Analyse in der Arbeitsgruppe von Privatdozentin Karin Fink vom Karlsruher Institut für Technologie präzisiert die verschiedenen komplexen Quantenzustände des Kobalt-Ionenpaars. Es ist somit gelungen, elementare Physik in einem einzelnen Molekül nachzustellen.

Switching of a coupled spin pair in a single-molecule junction, Stefan Wagner et. al., Nature Nanotechnology (2013), doi:10.1038/nnano.2013.133.

Weiterer Kontakt:
Prof. Dr. Heiko B. Weber
heiko.weber@physik.uni-erlangen.de

Anzeige
Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Rastertunnelmikroskopie

Magnetismus von einzelnen AtomenKleine Kräfte, große Wirkung

Ein Wasserstoffatom ist das Zünglein an der Waage bei den Forschungen von Dr. Peter Jacobson. Der Physiker hat mit Kollegen am MPI für Festkörperforschung einen Weg gefunden, die magnetischen Eigenschaften von einzelnen Atomen gezielt zu beeinflussen.

…mehr
Metamaterial

MetamaterialKettenhemd als Vorbild

Das Mittelalter hat den Ruf einer nicht wissenschaftsfreundlichen Zeit: Wer abseits ausgetretener Pfade nach neuen Erkenntnissen suchte, konnte sich auf dem Scheiterhaufen widerfinden. So gilt der Beitrag der Epoche zum technischen Fortschritt als überschaubar.

…mehr
Pyrolytischer magnetischer Kohlenstoff (PMC): Das Modell zeigt die für die magnetischen Eigenschaften verantwortlichen ungepaarten Elektronenspins (rot). (Abbildung: Swati Sharma)

Für mikro- und nanoelektromechanische SystemeMagnetischer Kohlenstoff mit winzigen Mustern

Forschern am Karlsruher Institut für Technologie ist es erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen. Gemeinsam mit Wissenschaftlern an der Universität Freiburg versahen sie Polymere per Lithographie mit winzig kleinen Strukturen und wandelten sie über Pyrolyse um.

…mehr
magnetische Signale

MagnetismusEigenschaften von Magnetmaterialien gezielt ändern

Magnete sind nicht überall gleich magnetisch, sondern zerfallen automatisch in kleinere Bereiche, sogenannte magnetische Domänen. Von besonderer Bedeutung sind die Wände zwischen den Domänen.

…mehr
Eine becherartige Form (rechts unten), hergestellt im 3D-Drucker. (Copyright: TU Wien)

PermanentmagneteMagnete aus dem 3D-Drucker

Wie kann man einen Magneten bauen, der genau das gewünschte Magnetfeld hat? Die TU Wien hat eine Lösung: Erstmals können Magnete mit 3D-Drucker hergestellt werden.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung