Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik>

Magnetfeldfreier Raum für Präzisionsexperimente

Achema 2018 – Halle 11.1, Stand F46Kompakte Druck- und Temperaturmessumformer

Druckmessumformer und Temparaturmessumformer (Bild: Labom)

Der Messgerätehersteller Labom stellt auf der Achema seine neue V-Line vor: Die Druck- und Temperaturmessumformer haben ein kompaktes und anwenderfreundliches Design mit hohem Bedienkomfort. 

…mehr

Nahezu magnetfeldfreier RaumWeltrekord-Magnetfeld für Präzisionsexperimente

Magnetfelder durchdringen Materie problemlos. Einen Raum zu schaffen, in dem es praktisch keine magnetischen Felder mehr gibt, ist daher eine große Herausforderung. Ein internationales Team von Physikern hat nun eine Abschirmung entwickelt, die niederfrequente Magnetfelder um einen Faktor von mehr als einer Million dämpft.

sep
sep
sep
sep
Magnetisch abgeschirmter Raum

Damit haben sie in Garching einen Raum geschaffen, in dem das schwächste Magnetfeld dieses Sonnensystems herrscht. Hier wollen die Physiker nun Präzisionsexperimente durchführen.

Magnetfelder sind überall im Universum. Auch auf der Erde sind wir stets von Magnetfeldern umgeben – natürlichen und künstlichen. Das Erdmagnetfeld, das in Mitteleuropa eine Stärke von etwa 48 Mikrotesla hat, ist immer vorhanden. Dazu addieren sich örtlich weitere Magnetfelder, etwa von Transformatoren, Motoren, Kränen oder auch von Metalltüren.

Einer Gruppe von Wissenschaftlern um Prof. Peter Fierlinger, Physiker an der Technischen Universität München (TUM) und Mitglied des Exzellenzclusters Universe, ist es nun gelungen, auf dem Garchinger Forschungscampus einen Raum mit 4,1 m³ Innenvolumen aufzubauen, in dem permanente und zeitlich veränderliche Magnetfelder um mehr als das Millionenfache reduziert sind.

Anzeige

Dies wird durch eine magnetische Abschirmung aus verschiedenen Schalen einer hochmagnetisierbaren Legierung erreicht. Die dadurch erzielte magnetische Dämpfung sorgt dafür, dass das Rest-Magnetfeld im Inneren des Raums sogar kleiner ist als in den Tiefen unseres Sonnensystems. Es verbessert die bisherigen Dämpfungsmöglichkeiten um mehr als den Faktor zehn.

Präzisionsexperimente zum elektrischen Dipolmoment des Neutrons
Die Reduzierung elektromagnetischer Störungen ist eine wichtige Voraussetzung für viele hochpräzise Experimente in der Physik, aber auch in der Biologie und der Medizin. In der Grundlagenphysik ist eine maximale magnetische Abschirmung entscheidend für die Präzisionsmessungen winziger Effekte von Phänomenen, die im frühen Universum die Entwicklung unseres Universums vorangetrieben haben.

Die Gruppe von Peter Fierlinger entwickelt derzeit ein Experiment, welches die Ladungsverteilung – Physiker sprechen vom elektrischen Dipolmoment – in Neutronen bestimmen soll. Neutronen sind Kernteilchen, die ein winziges magnetisches Moment besitzen, aber elektrisch neutral sind. Zusammengesetzt sind sie aus drei Quarks, deren Ladungen sich jedoch nach außen aufheben.

Wissenschaftler vermuten jedoch, dass Neutronen ein winziges elektrisches Dipolmoment besitzen. Doch die bisherigen Messungen erreichten nicht die nötige Präzision. Der neue, nahezu magnetfeldfreie Raum schafft nun die Voraussetzungen, die Genauigkeit der bisherigen Messungen des elektrischen Dipolmoments des Neutrons um den Faktor 100 zu verbessern, und damit in die Dimension der theoretisch vorhergesagten Größe des Phänomens vorzudringen.

Physik jenseits der Grenzen des Standardmodells
„Eine solche Messung wäre von fundamentaler Bedeutung für die Teilchenphysik und würde die Tür zu einer neuen Physik jenseits des Standardmodells der Teilchenphysik weit aufstoßen”, erklärt Peter Fierlinger. Das Standardmodell beschreibt mit hoher Präzision die Eigenschaften aller bisher bekannten Fundamentalteilchen.

Es bleiben jedoch Phänomene, für die es keine Erklärungen gibt: Die Schwerkraft etwa kommt in diesem Modell überhaupt nicht vor. Auch versagt das Standardmodell bei der Vorhersage des Verhaltens von Teilchen bei sehr hohen Energien, wie sie etwa im frühen Universum vorhanden waren. Und schließlich liefert es auch keine Begründung dafür, warum sich Materie und Antimaterie nach dem Urknall nicht vollständig vernichtet haben, sondern ein kleiner Teil Materie übrigblieb, aus dem wir und das uns umgebende, sichtbare Universum aufgebaut sind.

An Teilchenbeschleunigern wie dem Large Hadron Collider (LHC) am CERN versuchen Physiker daher kurzzeitig Bedingungen zu erzeugen, wie sie im frühen Universum geherrscht haben. Sie bringen Teilchen bei hohen Energien zur Kollision um auf diese Weise insbesondere neue Teilchen zu erzeugen.

Alternativen zur Hochenergiephysik
Die Experimente der TUM-Wissenschaftler sind komplementär zu dieser Hochenergie-Physik: „Unsere Hochpräzisions-Experimente können die Natur von Teilchen in Energie-Größenordnungen untersuchen, die von den gegenwärtigen oder zukünftigen Generationen von Teilchenbeschleunigern nicht erreicht werden dürften”, sagt der Doktorand Tobias Lins, der im Labor von Peter Fierlinger am Aufbau der magnetischen Abschirmung mitgearbeitet hat.

Exotische, bisher unbekannte Teilchen können die Eigenschaften von bekannten Teilchen verändern. Daher könnten selbst kleine Abweichungen bei den Eigenschaften bekannter Teilchen Hinweise auf bisher unentdeckte Partikel sein.

Am Aufbau und den Messungen der magnetischen Abschirmung waren neben den Wissenschaftlern von der TU München Physiker von der Physikalisch-Technischen Bundesanstalt Berlin, der University of Illinois at Urbana-Champaign, USA, der University of Michigan, USA, sowie der IMEDCO AG, Schweiz, beteiligt. Finanziell wurde die Arbeit gefördert von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Schwerpunktprogramms SPP 1491 und des Exzellenzclusters Origin and Structure of the Universe.

Publikation:
IAltarev et al.: A large-scale magnetic shield with 10^6 damping at mHz frequencies. Journal of Applied Physics, 117-18, May 14, 2015. DOI: 10.1063/1.4919336. http://arxiv.org/abs/1501.07861.

Kontakt:
Prof. Dr. Peter Fierlinger
Exzellenzcluster Universe
Technische Universität München
Boltzmannstr. 2, 85748 Garching, Germany
E-Mail: peter.fierlinger@universe-cluster.de
Internet: http://www.universe-cluster.de/fierlinger/group.html

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Neutron und Proton

Theorie der starken Wechselwirkung bestätigtSupercomputer bestimmt Massendifferenz zwischen Neutron und Proton

Nur weil das Neutron ein ganz klein wenig schwerer ist als das Proton, haben Atomkerne genau die Eigenschaften, die unsere Welt und letztlich unsere Existenz ermöglichen.

…mehr

Weitere Beiträge zu dieser Firma

Verbessertes Datenportal für...Internetseite bietet neue Werkzeuge und Services

Die German Federation for Biological Data, kurz GFBio, hat ihren Internetauftritt überarbeitet und um neue Werkzeuge und Angebote erweitert. GFBio ist ein von der Deutschen Forschungsgemeinschaft gefördertes interdisziplinäres Verbundprojekt zur nachhaltigen Sicherung von Forschungsdaten aus der Biologie und den Umweltwissenschaften.

…mehr
Jubiläum: Leistungsfähigste Neutronenquelle der Welt feiert 10-Jähriges

JubiläumLeistungsfähigste Neutronenquelle der Welt feiert 10-Jähriges

Seit genau 10 Jahren liefert die Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) Neutronen für Forschung, Industrie und Medizin.

…mehr

Weitere Beiträge in dieser Rubrik

Fluke Process Instruments fertigt berührungslose Infrarot-Temperaturmesstechnik für die Verfahrensindustrie, darunter Ex-i-Sensoren für vernetzte Installationen. (Bild: Fluke Process Instruments)

Achema 2018 – Halle 11.1, Stand F31ATEX-zertifizierte Temperatursensoren und mehr

Fluke Process Instruments präsentiert auf der Achema Infrarot-Thermometer und Wärmebildsysteme für die Verfahrensindustrie. Der Hersteller bietet eigensichere Temperatursensoren für den Einsatz in gas- und staubexplosionsgefährdeten Bereichen der Zonen 1, 2, 21 und 22. 

…mehr
Nur wenige Sekunden dauert die Bestimmung des gewünschten Parameters mit den neuen Handmessgeräten der HI99er-Reihe von Hanna Instruments. (Bild: Hanna Instruments)

Achema 2018 – Halle 4.1, Stand H78Neuauflage bei 21 Handmessgeräten

Hanna Instruments präsentiert auf der Achema die Neuauflagen von 21 flexiblen Handmessgeräten für pH-, Leitfähigkeits- und Multiparametermessungen. Dazu zählen sowohl Universalmessinstrumente als auch anwendungsspezifische Geräte für die Wasser-, Umwelt- und Lebensmittelanalytik.

…mehr
Anzeige
Anzeige

Bildergalerien bei LABO online

Anzeige

Nichts mehr verpassen!

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung