Prozesse der Zellreinigung untersucht

Die Rolle von Proteinen bei Membranfusionen

Forscher konnten neue Erkenntnisse über die Rolle von Proteinen bei der für die Zellreinigung wichtigen Verschmelzung von Autophagosomen und Vakuolen gewinnen.

Zellen sammeln, zersetzen und recyceln überflüssiges oder beschädigtes Zellmaterial. Dieser Prozess, die Autophagie, ist wichtig, da zelluläre Abfälle für den gesamten Organismus schädlich sind, wenn sie sich in den Zellen ansammeln.

In einer Hefezelle wird der Zellabfall (magentafarben) von Autophagosomenmembranen (grün) eingehüllt. © Claudine Kraft

Ein Team um Prof. Dr. Claudine Kraft vom Institut für Biochemie und Molekularbiologie der Universität Freiburg und Levent Bas vom Institut für Biochemie und Zellbiologie der Universität Wien/Österreich hat neue Erkenntnisse über die Rolle von Proteinen bei der für die Zellreinigung wichtigen Verschmelzung von Autophagosomen und Vakuolen gewonnen und diese in der aktuellen Ausgabe des Fachmagazins Journal of Cell Biology (JCB) veröffentlicht.

Während des Prozesses der Autophagie werden beschädigte Zellteile, ungenutzte Proteine oder andere zelluläre Abfälle in einem Vesikel, dem so genannten Autophagosom, eingeschlossen, so wie auch Hausmüll in Säcke gepackt wird. Die Vesikel werden bei Säugetieren zu einem Lysosom oder in Hefen und Pflanzen zu Vakuolen, den Zellorganellen, transportiert. Diese Organellen dienen einem ähnlichen Zweck wie Recyclingfabriken: Sie bauen das von den Autophagosomen mitgebrachte Material ab, so dass dessen einzelne Bausteine wiederverwendet werden können. Zahlreiche Proteine initiieren und regulieren den Prozess in den Zellen: Über 40 verschiedene sind bisher identifiziert. Deren molekulare Funktion ist jedoch weitgehend noch unbekannt. Nicht bekannt war bisher auch, wie es den Autophagosomen und den Vakuolen gelingt, ihre Membranen richtig zu verschmelzen, damit die zellulären Abfälle recycelt werden.

Anzeige

In ihrer aktuellen Veröffentlichung gibt die Freiburger Biochemikerin eine mögliche Erklärung: Um die Anforderungen der Autophagosomen-Vakuolen-Fusion zu verstehen, haben Kraft und Bas mit ihrem Team den Prozess im Labor nachgestellt. Sie trennten Vakuolen, Autophagosomen und intrazelluläre Flüssigkeit von Hefezellen und schufen eine Umgebung, in der die Fusion in vitro, also außerhalb eines lebenden Organismus, beobachtet werden kann.

Generell sind bei Membranfusionen vier gebündelte sogenannte SNARE-Proteine erforderlich. Die Wissenschaftlerinnen und Wissenschaftler um Kraft konnten nun bestätigen, dass auch die Autophagosomen-Vakuolen-Fusion ein von SNARE-Proteinen getriebener Prozess ist und dass drei bisher bekannte SNAREs während des Fusionsvorgangs wirken. Zudem entdeckten sie das vierte benötigte SNARE, Ykt6 genannt. Die Ergebnisse helfen, die Autophagie und ihre zugrunde liegenden molekularen Prozesse besser zu verstehen. Und dank ihres neu entwickelten In-vitro-Ansatzes können zukünftig weitere Proteine identifiziert werden, die im Fusionsprozess wirken.

Publikation:
Levent Bas, Daniel Papinski, Mariya Licheva, Raffaela Torggler, Sabrina Rohringer, Martina Schuschnig, and Claudine Kraft (2018): Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion. In: Journal of Cell Biology. DOI: 10.1083/jcb.201804028

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Effizienz und Leistung

Die neue Pioneer mit vielen Funktionen zum intelligenten Betrieb in Ihrem Labor. Mit antistatischem Stab zur Erdung. Weitere Informationen über die Waagen Pioneer PX

 

mehr...
Anzeige
Anzeige

Highlight der Woche

Quadrupol-Massenspektrometer PrismaPro®
Mit dem PrismaPro bietet Pfeiffer Vacuum ein Quadrupol-Massenspektrometer für die qualitative und quantitative Gasanalyse sowie zur Lecksuche an.

Zum Highlight der Woche...
Anzeige

Highlight der Woche

Perfekte GCMS-Ergebnisse dank Shimadzu NX-Technologien
Shimadzu erweitert die Singlequad- und Triplequad-GCMS um den Gaschromatographen GC-2030. Damit werden Analysen präziser, Wartungsarbeiten vereinfacht und die Geräteauslastung maximiert.

Zum Highlight der Woche...

Brustkrebs

Zell-Stress fördert Metastasierung

DKFZ- und HI-STEM-Wissenschaflter haben bei Brustkrebs ein zentrales Schalterprotein identifiziert, das bei zellulärem Stress – wie z. B. durch eine Chemotherapie – die Metastasierung des Tumors fördert. An den identifizierten Zielstrukturen könnten...

mehr...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite