Erweitert Anwendungsmöglichkeiten von Halbleitern

Transport ohne Träger

Physiker aus Marburg und dem finnischen Aalto haben eine Versuchsanleitung entwickelt, die neue nanotechnische Anwendungen von Halbleitern eröffnet. Demnach ist eine Sequenz elektromagnetischer Pulse in der Lage, Ladungen über die inneren Grenzflächen von Halbleitern zu transportieren, die aus ungleichartigen Materialien bestehen.

Prof. Dr. Stephan Koch (links) und Prof. Dr. Mackillo Kira. (Fotos: AG Theoretische Physik der Philipps-Universität)

„Der Transport von Ladungen über Grenzflächen hinweg ist von entscheidender Bedeutung bei vielen Naturerscheinungen und technischen Anwendungen“, erklärt Prof. Dr. Mackillo Kira von der Philipps-Universität. Das gilt etwa für Solarzellen, aber auch für organische Prozesse wie die Photosynthese, mit der Pflanzen Energie aus Sonnenlicht gewinnen. Solarzellen beruhen auf Halbleitern, die aus mehreren Schichten verschiedener Materialien aufgebaut sind.

Kira und sein Marburger Kollege Prof. Dr. Stephan Koch sowie ihre finnischen Partner Dr. Osmo Vänskä und Prof. Dr. Ilkka Tittonen wählten als Modell ein Halbleitersystem auf der Basis von Galliumarsenid, das die Beweglichkeit eines Teilchens stark einschränkt, einen so genannten Quantentopf. Sie nutzten einen vor wenigen Jahren entwickelten Theorierahmen für die Quanten-Laserspektroskopie, um zu zeigen, wie ein effizienter Ladungstransfer über innere Grenzflächen hinweg verwirklicht werden kann. Dabei kommen Terahertz-Strahlen zur Anwendung, um den Halbleiter kontrolliert anzuregen.

„Das gelingt derart präzise, dass es sogar möglich ist, quantenmechanische Eigenschaften zu transportieren, ohne Teilchen zu bewegen“, hebt Koautor Koch hervor. Die vorgeschlagene Vorgehensweise ist den Autoren zufolge geeignet, Grenzflächen bei nanotechnologischen Anwendungen zu charakterisieren und deren Eigenschaften nutzbar zu machen.

Anzeige

Prof. Dr. Stephan Koch und Prof. Dr. Mackillo Kira lehren Theoretische Halbleiterphysik an der Philipps-Universität. Erst vor wenigen Jahren legten sie einen neuen Theorierahmen für die Quanten-Laserspektroskopie vor.

Die aktuelle Veröffentlichung wurde unter anderem von der „Suomen Akatemia“ (Akademie von Finnland) sowie durch den Sonderforschungsbereich (SFB) 1083 der Deutschen Forschungs-gemeinschaft an der Philipps-Universität finanziell gefördert. Der SFB vereint mehr als 60 Forscherinnen und Forscher aus Chemie und Physik, die Grenzflächen an einer Vielzahl anorganischer und organischer Festkörper untersuchen, um anhand ihrer Modellsysteme zu einem detaillierten Verständnis der chemischen Bindung, der elektronischen Kopplung und der Energieübertragung zu gelangen.

Originalveröffentlichung:
Osmo Vänskä et al.: Coherent terahertz control of vertical transport in semiconductor heterostructures, Physical Review Letters 114 (2015), 116802. DOI: 10.1103/PhysRevLett.114.116802, URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.116802.

Weitere Informationen:
Prof. Dr. Mackillo Kira
Fachgebiet Theoretische Halbleiterphysik
E-Mail: Mackillo.Kira@physik.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb13/forschung/theoretische-halbleiterphysik

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Effizienz und Leistung

Die neue Pioneer mit vielen Funktionen zum intelligenten Betrieb in Ihrem Labor. Mit antistatischem Stab zur Erdung. Weitere Informationen über die Waagen Pioneer PX

 

mehr...

Quantenmechanik

Das Atom ohne Eigenschaften

Die Welt der kleinsten Teilchen folgt den Regeln der Quantenmechanik. Sie lassen es zu, dass die Eigenschaften eines Teilchens völlig unbestimmt und dennoch stark mit denen anderer Teilchen verknüpft sind.

mehr...
Anzeige