Labo Online - Analytic, Labortechnik, Life Sciences
Home> Wirtschaft + Wissenschaft> Archiv>

Sensor für biochemische Reaktionen

Schalter für die NanooptikDNA und Gold-Nanostäbchen als Lichtschalter

Die Elektronik hat Konkurrenz bekommen. Information wird immer häufiger mit Licht statt Elektronen übertragen und verarbeitet. Und wie die elektronischen Bauelemente sollen ihre photonischen Pendants auf Nanoformat schrumpfen.

sep
sep
sep
sep
Schalter für die Nanooptik: DNA und Gold-Nanostäbchen als Lichtschalter

Nun haben Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart, der Ludwig-Maximilian-Universität in München sowie der Ohio University in Athens, USA, einen Schalter für die Nanooptik entwickelt. Eine zentrale Rolle spielen dabei zwei Gold-Nanostäbchen. Ändert sich der Winkel zwischen ihnen, ändern sich auch bestimmte optische Eigenschaften des Nanolichtschalters. Den Winkel wiederum regulieren die Forscher mit Molekülen, die in der belebten Natur Träger der Erbinformation sind: mit DNA.

Mit zwei hauchdünnen Gold-Nanostäbchen, die 10000 Mal dünner sind als ein menschliches Haar, ist es Forschern aus Stuttgart und München gelungen, einen variierbaren Filter für sogenanntes zirkular polarisiertes Licht zu erschaffen. Entscheidend dafür, wie das System das Licht absorbiert, ist dabei der Winkel zwischen den beiden Gold-Stäbchen.

Anzeige

Bei zirkular polarisiertem Licht rotiert die schwingende Lichtwelle um die Achse, entlang derer sich der Lichtstrahl ausbreitet. Je nach Drehrichtung lassen sich dabei links- und rechtsdrehende Polarisierungen unterscheiden. Viele Moleküle ändern ihre Absorptionseigenschaften für derartiges Licht, wenn man ihre innere räumliche Anordnung verändert.

Der Winkel zwischen zwei Gold-Stäbchen steuert deren Lichtabsorption
Diesen Umstand machten sich Physiker vom Max-Planck-Institut für Intelligente Systeme in Stuttgart, vom Center for NanoScience an der Fakultät für Physik der Ludwig-Maximilian-Universität in München und von der Ohio University in Athens, USA, zunutze. Je nachdem, in welchem Winkel sich die Gold-Stäbchen zueinander befinden, absorbieren sie entweder bevorzugt links zirkular polarisiertes Licht oder rechtes. Die Experten nennen dieses Verhalten Zirkulardichroismus. Bei der Absorption, die auch von der eingestrahlten Wellenlänge abhängt, kommt es zur Anregung von kollektiven Elektronenschwingungen im Metallgitter, sogenannten Plasmonen. Die Resonanzbedingungen, die für die Absorption von links- oder rechtsdrehendem Licht erfüllt sein müssen, werden dabei auch von der Anordnung der Gold-Stäbchen zueinander beeinflusst.

Bei der Wahl des Metalls war es für die Forscher wichtig, dass ihre Anordnung den Zirkulardichroismus im Bereich des sichtbaren Lichts zeigt. "Dies ist nur bei Gold der Fall", erklärt Laura Na Liu, die das Projekt auf Seiten des Max-Planck-Instituts für Intelligente Systeme leitete. Es stellte sich allerdings noch die Frage, wie sich der Winkel zwischen den Stäbchen von außen kontrolliert regulieren ließ. Die Wissenschaftler benötigten eine Art flexibles Scharnier zwischen den Gold-Nanostäbchen - einen Schalter.

Hierzu fixierten sie jeden Nanostab zunächst auf jeweils einem sogenannten DNA-Origami-Bündel. Dabei handelt es sich um mehrfach gefaltete, insgesamt länglich ausgerichtete DNA-Strukturen. "Auf der Nanoskala sind Scharniere extrem schwer zu realisieren", sagt Laura Na Liu. "Daher liegt die Verwendung von DNA gerade nach der Einführung von DNA-Origami durchaus nahe."

DNA-Fragmente wirken wie Klettverschlüsse am Goldkreuz
Die chemische Bindung zwischen jeweils einem DNA-Bündel und einem Gold-Stäbchen bewirkt, dass diese absolut parallel zueinander verlaufen. Zwei DNA-Bündel - und damit auch die zugehörigen Goldstäbe - liegen zunächst in annähernd rechtem Winkel über Kreuz. Ganz ähnlich wie man zwei kleine Äste im Wald übereinanderlegen würde.

Der eigentliche Trick bei der Anordnung bestand nun darin, die beiden DNA-Bündel und damit die daran befestigten Gold-Stäbchen gegeneinander verdrehen zu können. Hierbei machten sich die Forscher eine besondere Eigenschaft von DNA-Molekülen zunutze. Nämlich die, dass sich zwei DNA-Ketten zu einem Doppelstrang zusammentun, wenn die Abfolge der Basen entlang der beiden Einzelstränge komplementär ist.

Um das zu nutzen, ließen die Forscher an ganz bestimmten Stellen ihrer Bündel-Anordnung DNA-Molekülreste mit definierter Basenabfolge herausragen. Man kann sich diese Reste wie die eine Seite eines Klettverschlusses vorstellen. Zunächst sind diese Verschlüsse noch teilweise blockiert. Doch durch Zugabe definierter DNA-Molekülfragmente lässt sich die Blockade der Klettverschlüsse aufheben - so dass sie bereit sind, sich mit dem zu ihnen passenden Gegenstück zu verbinden. Dieses Gegenstück ließen die Forscher am jeweils anderen DNA-Bündel herausragen. Auf die Weise rückte dann das untere Ende des vertikalen Bündels, je nach Art des zugegebenen DNA-Fragments, entweder mit dem rechten oder mit dem linken Ende des horizontalen Bündels zusammen. Die Folge: In beiden Fällen wurde die Kreuzanordnung mit annähernd rechtem Winkel in eine Art Andreaskreuz mit schräg übereinander liegenden Bündeln überführt. Da damit auch die Gold-Stäbchen ihre Ausrichtung zueinander änderten, änderte sich auch ihr Absorptionsverhalten von zirkular polarisiertem Licht.

Ein Sensor für biochemische Reaktionen
"Um solch einen Schalter auch für praktische Anwendungen nutzen zu können, ist es natürlich wichtig, dass dieser Vorgang umkehrbar, also reversibel ist", erklärt Liu. Und in der Tat gelang den Forschern auch dies: Die Zugabe eines anderen DNA-Fragments bricht die Verbindung zwischen horizontalem und vertikalem Bündel nämlich wieder auf - und stellt damit die Ausgangslage wieder her. Durch erneute Zugabe von DNA kann der Prozess erneut gestartet werden. Und so fort.

Damit haben die Physiker eine Nanostruktur geschaffen, die sich mittels DNA-Molekülen reversibel schalten lässt. Daraus ergeben sich für die Forscher eine Reihe möglicher Anwendungen - nicht nur als Schaltelement in der Nanooptik oder der photonischen Informationsverarbeitung. So können sie sich beispielsweise vorstellen, ein solches System als Nanosensor für biochemische Reaktionen einzusetzen. Würde man eine der Reaktionskomponenten an die freien DNA-Reste, also die Enden der Klettverschlüsse binden, könnte die anschließende chemische Reaktion mit einer anderen Komponente die Konformation des gesamten Systems so verändern, dass sich dies durch Messen des Absorptionsverhaltens in Echtzeit verfolgen ließe. Auch die Konstruktion sogenannter optischer Superflüssigkeiten sei denkbar, so die Forscher. Bei diesen ließe sich, quasi auf Knopfdruck, der Brechungsindex einstellen.

Originalpublikation:
Anton Kuzyk, Robert Schreiber, Hui Zhang, Alexander O. Govorov, Tim Liedl und Na Liu, Reconfigurable 3D plasmonic metamolecules in the visible wavelength range, Nature Materials, online veröffentlicht am 6. Juli 2014; doi:10.1038/nmat4031.

Ansprechpartner:
Dr. Laura Na Liu
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart
E-Mail: laura.liu@is.mpg.de

Annette Stumpf
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart
E-Mail: stumpf@is.mpg.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zu dieser Firma

Eine fluoreszierende Nervenzelle (grün) in einer Zellkultur. An den rosa gefärbten Synapsen kommuniziert die Zelle mit ihren Partnern. (© MPI f. experimentelle Medizin)

Ursache für HirnerkrankungNeuer genetischer Krankheitsmechanismus

„Timing ist alles“ bei der Signalübertragung zwischen Nervenzellen im Gehirn. Die allermeisten komplexen Leistungen, zu denen Menschen imstande sind, wären schwer beeinträchtigt, wenn ihre Nervenzellen nicht in der Lage wären, auf die tausendstel Sekunde genau miteinander zu kommunizieren.

…mehr
Prof. Dr. Georg Pohnert

Die chemische Ökologie von...Wie individuell sind einzellige Mikroalgen im Meer?

Prof. Dr. Georg Pohnert, Inhaber des Lehrstuhls für Instrumentelle Analytik der Friedrich-Schiller-Universität Jena, wurde von der Max-Planck-Gesellschaft zum Max Planck Fellow ernannt.

…mehr

Weitere Beiträge in dieser Rubrik

Prof. Dr. Markus Nöthen (links) und Dr. Andreas Forstner mit einem Manhattan-Diagramm

Großangelegte ErbgutanalyseForscher entdecken 30 neue Gene für Depression

Ein internationales Forscher-Konsortium entdeckte unter Beteiligung der Universität Bonn insgesamt 30 neue Genorte, die mit schwerer Depression in Zusammenhang stehen. 14 Erbgutregionen, die Forscher bereits vorher entschlüsselt haben, wurden darüber hinaus bestätigt.

…mehr
Das von mySkin entwickelte mobile Endgerät „OKU“ analysiert verschiedenste Hauteigenschaften und kann Empfehlungen zur Hautpflege geben. (Bild: Evonik)

Digitale HautanalyseEvonik investiert in das amerikanische Start-Up mySkin

Evonik hat über seine Venture Capital-Einheit in das amerikanische Start-Up mySkin, Inc investiert und hält nun eine Minderheitsbeteiligung an dem Unternehmen zur digitalen Hautanalyse mit Sitz in Jersey City (New Jersey, USA).

…mehr
Die menschliche Nase

Forscher entwickeln GeruchssensorElektronische Nase erkennt unterschiedliche Gerüche

Forscher des KIT entwickeln einen alltagstauglichen Sensor, der frühzeitig beispielsweise Kabelbrände oder verdorbene Lebensmittel „riechen“ kann.

…mehr
Anzeige

Mediadaten 2018

LABO Einkaufsführer

Produktkataloge bei LABO

Produktkataloge zum Blättern


Hier finden Sie aktuelle Blätter-Kataloge von Herstellern aus der Branche. Einfach durchblättern oder gezielt nach Stichwort suchen!

Anzeige

LABO Web-Guide 2016 als E-Paper

LABO Web-Guide 2016

Web-Guide 2016


- Stichwortregister

- Firmenscreenshots

-Interessante Webadressen aus dem Labor

Anzeige

Neue Stellenanzeigen

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

LABO bei Facebook und Twitter