Labo Online - Analytic, Labortechnik, Life Sciences
Home> Wirtschaft + Wissenschaft> Archiv>

Tor zur Therapie mit humanen Muskelstammzellen aufgestoßen

Therapie mit humanen MuskelstammzellenWissenschaftler entwickeln neue Methode

Muskelstammzellen sind für die Reparatur von Muskelschäden unverzichtbar. Alle Versuche, Muskelstammzellen des Menschen therapeutisch zu nutzen, sind jedoch bisher fehlgeschlagen. Wie es aber doch gehen könnte, haben jetzt Dr. Andreas Marg und Prof. Dr. Simone Spuler vom Experimental and Clinical Research Center (ECRC) des Max-Delbrück-Centrums (MDC) und der Berliner Charité in Berlin-Buch gezeigt.

sep
sep
sep
sep
Therapie mit humanen Muskelstammzellen: Wissenschaftler entwickeln neue Methode

Sie entwickelten eine Methode, mit der sie Muskelstammzellen nicht isoliert, sondern zusammen mit ihrer Muskelfaser kultivieren, vermehren und transplantieren. Bei Mäusen konnten sie mit dieser Methode bereits erfolgreich Muskeln regenerieren. Sie haben damit das Tor für den Einsatz von Muskelstammzellen für die Therapie von Muskelerkrankungen aufgestoßen (Journal of Clinical Investigation, http://dx.doi.org/10.1172/JCI63992)*.

Anzeige

"Muskelstammzellen, die wir auch Satellitenzellen nennen, können nach jahrzehntelanger Ruhe in ihrer Stammzellnische erwachen und einen geschädigten Muskel reparieren", erläutert Prof. Spuler. Die Neurologin leitet am ECRC in Berlin-Buch die Hochschulambulanz für Muskelkrankheiten der Charité und erforscht mit ihrem Team die Ursachen dieser Erkrankungen. Satellitenzellen sind auch bei Menschen mit schweren Muskelerkrankungen aktiv, etwa bei der Muskeldystrophie Duchenne, einer schweren, genetisch bedingten Erkrankung, bei der sich die Muskeln abbauen. "Doch irgendwann ist das Reservoir an Muskelstammzellen erschöpft und der Muskelabbau kann nicht mehr gestoppt werden", so Prof. Spuler.

Alle Versuche, mit der Transplantation von Satellitenzellen bei Patienten mit Duchenne Muskeldystrophie Muskeln wieder aufzubauen, sind gescheitert. Die transplantierten Zellen sind nicht lebensfähig. Wenig erfolgreich war auch der Einsatz anderer Zellen, die ebenfalls das Potenzial haben, Muskeln zu regenerieren. Diese Zellen können nur in begrenztem Maß Muskelgewebe reparieren. Aber wie kann es gelingen, das körpereigene Selbsterneuerungs- und Wiederaufbaupotenzial von Satellitenzellen doch noch zu nutzen?

Das Angebot der Entwicklungsbiologin Prof. Dr. Carmen Birchmeier (MDC) im Rahmen eines Verbundprojekts zu Satellitenzellen (SatNet) des Bundesforschungsministeriums mitzuarbeiten, brachte Prof. Spuler und ihre Mitarbeiter auf die Spur. In dem Projekt wurde unter anderem untersucht, weshalb Satellitenzellen schnell ihr Regenerationspotenzial verlieren, wenn sie in Zellkultur gehalten werden. Daraus entstand die Idee, Satellitenzellen zusammen mit dem sie umgebenden Muskelgewebe zu kultivieren und zu sehen, ob die Zellen, wenn ihr vertrautes Milieu erhalten bleibt, möglicherweise besser regenerieren.

Muskelbiopsien von jungen und von alten Spendern
Von Neurochirurgen des Helios Klinikums Berlin-Buch, das ebenso wie das MDC in unmittelbarer Nähe zum ECRC liegt, erhielten Prof. Spuler und Dr. Marg - nach Aufklärung und schriftlicher Einwilligung - von Patienten im Alter zwischen 20 und 80 Jahren frische Gewebeproben von Oberschenkelmuskeln. Aus den Biopsien gewannen Prof. Spuler und ihre Mitarbeiter über 1000 Muskelfaserfragmente, jedes etwa 2...3 mm lang. Für die Forscher ist bemerkenswert, dass die Anzahl der Stammzellen in den einzelnen Gewebeproben unabhängig vom Alter des Spenders war und dass sich aus wenigen Satellitenzellen tausende von Myoblasten entwickelten. Diese Zellen fusionieren nach weiteren Entwicklungsschritten zu Muskelfasern.

Dr. Marg: "Satellitenzellen brauchen ihr 'Haus' um sich herum"
Prof. Spuler und ihre Mitarbeiter kultivierten die Muskelfaserfragmente mit den Satellitenzellen zunächst für bis zu 3 Wochen. In dieser Zeit vermehrten sich die Satellitenzellen um das 20- bis 50-fache, aber auch zahlreiche Bindegewebszellen entwickelten sich in diesen Kulturen. Um das zu verhindern, unterzogen sie die Muskelfragmente gleichzeitig einem Sauerstoffentzug (Hypoxie) und einer Kühlung (Hypothermie) bei 4 °C. Unter diesen Bedingungen können nur Satellitenzellen in ihrer Stammzellnische überleben, nicht aber die Bindegewebszellen. "Offenbar erhalten die Satellitenzellen im eigenen 'Haus' die notwendige Versorgung", so Dr. Marg.

Erstmals Satellitenzellen des Menschen kultiviert und vermehrt
Erstmals ist es den ECRC-Forschern mit ihren Versuchen gelungen zu zeigen, dass es möglich ist, Satellitenzellen des Menschen zu kultivieren, zu vermehren und ihr Regenerationspotenzial für einige Wochen zu erhalten. Damit haben sie eine wichtige Voraussetzung für die Nutzung patienteneigener Zellen für die Therapie geschaffen.

Erster Erfolg in Mäusen
Ihren Therapieansatz untersuchten die ECRC-Forscher dann in Mäusen, deren Muskelregeneration durch Bestrahlung unterbunden worden war. In den vorderen Schienbeinmuskel transplantierten sie Muskelfragmente mit den darin enthaltenen Satellitenzellen, die sie nach Hypothermie für 2 Wochen in Zellkultur gehalten hatten. Und es zeigte sich, dass die Muskeln der Tiere, die mit diesen Faserfragmenten behandelt wurden, besonders gut regenerierten.

Ziel: Satellitenzellen mit Gentherapie zu koppeln
Doch mit der Transplantation von Muskelfragmenten allein kann eine genetisch bedingte Muskelerkrankung nicht erfolgreich behandelt werden. Prof. Spuler: "Die Idee ist deshalb, die Satellitenzellen zusätzlich mit einem gesunden Gen zu bestücken, das den Gendefekt repariert, und sie dann mit Hilfe eines nicht-viralen Gentaxis in die zu behandelnden Muskeln einzubringen".

Dass das im Prinzip geht, haben Prof. Spuler und ihre Mitarbeiter in einem ersten Versuch mit einem "Reporter-Gen" in der Petrischale gezeigt. Es leuchtet grün, wenn es in die Satellitenzelle eingebracht wurde. Als Gentaxi nutzten sie das Transposon "Dornröschen" - ein springendes Gen, das seinen Ort im Genom verändern kann. Es wurde vor einigen Jahren von Dr. Zsuzsanna Izsvák (MDC) und Dr. Zoltán Ivics (Paul-Ehrlich-Institut, Frankfurt) entwickelt und gilt als vielversprechendes Vehikel für die Gentherapie.

Bevor die von Prof. Spuler und ihrer Gruppe entwickelte Methode für Patienten nutzbar gemacht werden kann, müssen aber noch einige Hürden genommen werden. Bislang gelingt die Transplantation in kleinen Mäusemuskeln. Ob diese Technik auch in großen Oberschenkelmuskeln des Menschen angewendet werden kann, die unter Umständen durch eine Muskelkrankheit stark verändert sind, wollen die Wissenschaftler und Ärzte in klinischen Versuchen überprüfen.

*Human satellite cells have regenerative capacity and are genetically manipulable: Andreas Marg1, Helena Escobar2, Sina Gloy1,*, Markus Kufeld3, Joseph Zacher4, Andreas Spuler5, Carmen Birchmeier6, Zsuzsanna Izsvák2, Simone Spuler1

1 Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin

2 Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin

3 Clinic for Radiation Oncology and Radiotherapy, Charité Universitätsmedizin Berlin

4 Dept. of Orthopedic Surgery, HELIOS Klinikum Berlin-Buch, Berlin

5 Dept. of Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin

6 Developmental Biology / Signal transduction, Max Delbrück Center for Molecular Medicine, Berlin

*present address: Pediatric Hospital St. Nikolaus, Viersen, Germany

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zu dieser Firma

Autoantikörper: Schädigen auch Mikrogefäße im Gehirn

AutoantikörperSchädigen auch Mikrogefäße im Gehirn

Schon seit einiger Zeit ist bekannt, dass bestimmte Antikörper des Immunsystems große Blutgefäße im Gehirn schädigen. Jetzt haben Wissenschaftler vom Max-Delbrück-Centrum für Molekulare Medizin an Nagern gezeigt, dass diese Antikörper auch die kleinen Blutgefäße in weiten Teilen des Gehirns angreifen und die Durchblutung vermindern.

…mehr

LymphdrüsenkrebsForscher identifizieren Immunzellen als Wachstumsbeschleuniger

Statt den Körper im Kampf gegen eine Krebserkrankung zu unterstützen, kann eine Gruppe von Immunzellen auch das Gegenteil bewirken und dazu beitragen, dass der Tumor weiter wächst und vor der Immunabwehr abgeschirmt wird. Das ist zum Beispiel der Fall bei Darm- und Magenkrebs, Brust- und Prostatakrebs.

…mehr

Weitere Beiträge in dieser Rubrik

Abstrakte Darstellung Passwortverschlüsselung

Datensicherheit aus dem LaborChemische Schlüssel für sichere Passwörter

Wissenschaftler aus dem KIT haben Informatik mit Chemie gepaart und ein gängiges Verschlüsselungsverfahren mit einem chemischen Passwort kombiniert. 

…mehr
Holm Kändler, Geschäftsführer der Hellma GmbH & Co. KG (Bild: Hellma)

Hellma erweitert die UnternehmensspitzeNeues Mitglied in der Geschäftsführung

Zum 1. März 2018 hat Hellma die Geschäftsführung durch Holm Kändler erweitert.

…mehr

BioanalytikKlinische Ergebnisse veröffentlicht: Bluttest zur der Erkennung von Leberkrebs

Die Epigenomics AG (FSE: ECX, OTCQX: EPGNY) Ergebnisse aus zwei klinischen Studien in EBioMedicine (unterstützt von Cell Press und The Lancet) bekannt gegeben und bezeichnet die Ergebnisse als "vielversprechend". Die Ergebnisse zeigen eine hohe Genauigkeit des epigenetischen Biomarker mSEPT9 bei der Erkennung von Leberkrebs in Patienten mit Leberzirrhose.

…mehr
Anzeige

Mediadaten 2018

LABO Einkaufsführer

Produktkataloge bei LABO

Produktkataloge zum Blättern


Hier finden Sie aktuelle Blätter-Kataloge von Herstellern aus der Branche. Einfach durchblättern oder gezielt nach Stichwort suchen!

Anzeige

LABO Web-Guide 2016 als E-Paper

LABO Web-Guide 2016

Web-Guide 2016


- Stichwortregister

- Firmenscreenshots

-Interessante Webadressen aus dem Labor

Anzeige

Neue Stellenanzeigen

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

LABO bei Facebook und Twitter