Kompaktere Datenspeicherung

Batman zeigt den Weg

Forschenden am Paul Scherrer Institut PSI ist es gelungen, winzige magnetische Strukturen mit Laserlicht umzuschalten und die Veränderung zeitlich zu verfolgen. Dabei blinkte kurz ein nanometergroßer Bereich auf, der skurrilerweise an das Fledermaus-Symbol von Batman erinnert. Die Forschungsergebnisse könnten die Datenspeicherung auf Festplatten kompakter, schneller und effizienter machen.

Forschende am PSI erblickten auf einem 5 x 5 µm kleinen Quadrat eine kuriose magnetische Substruktur schwarz auf weiß – und fühlten sich an die stilisierte Fledermaus des Batman-Logos erinnert. Die schwarzen Bereiche zeigen an, wo die Magnetisierung nach unten weist, also ins Bild hinein; in den weißen weist sie nach oben .

Computerfestplatten speichern Daten magnetisch. Um zukünftig größere Datenmengen auf kleinere Festplatten zu bannen, versuchen Forscher und Entwickler, die tatsächliche Größe der magnetischen Bits und Bytes immer kleiner zu gestalten. Forschende am Paul Scherrer Institut PSI setzen hierfür auf die Kombination aus einer mikrostrukturierten Oberfläche und einem Laserstrahl.

Die Oberfläche besteht aus einer regelmäßigen Anordnung winziger Quadrate aus einem magnetischen Material. In den verschiedenen Versuchen der Forschenden hatten diese Quadrate eine Kantenlänge zwischen einem und fünf tausendstel Millimeter. Jedes Quadrat oder sogar ein Teilbereich desselben ist für sich ein winziger Magnet und könnte so eines Tages ein Speicher-Bit sein.

Mikromagnete mit Licht umgedreht
Der zweite Teil des unkonventionellen Ansatzes ist, dass die PSI-Wissenschaftler die magnetische Richtung der Quadrate mit einem Laserstrahl gezielt umdrehen können. In heutigen Festplatten erfolgt die magnetische Schaltung und damit die Datenspeicherung mit einem kleinen Magnetkopf, der ähnlich wie die Nadel einer Schallplatte über die Festplatte fährt.

Anzeige
Experiment und Theorie im Vergleich: Die niederländischen Kollegen der PSI-Forschenden konnten die durch Laserstrahlen erzeugten magnetischen Strukturen in Computersimulationen gut nachvollziehen.

Die Forschenden am PSI arbeiten in diesem Projekt mit Kollegen aus den Niederlanden, Deutschland und Japan zusammen. Bereits vor zwei Jahren konnte die internationale Forschungsgruppe zeigen, dass ein kurzer, intensiver Laserpuls Mikro-Magnete mehrere hundert Mal schneller schalten kann als ein Magnetkopf. Der Laser ist dabei auch noch energieärmer und damit kostengünstiger. Der Clou ist offenbar, dass das Laserlicht die winzigen Magnete sehr schnell aufheizt und sie dadurch in den jeweils anderen Zustand überführen kann. „Die magnetische Schaltung mit Licht funktioniert eindeutig. Aber warum genau sie funktioniert, das ist in der Forschergemeinde noch umstritten“, erklärt Frithjof Nolting, Forscher am PSI und Leiter der Studie.

Schnappschüsse des Umklappens
Für ein besseres Verständnis dieses magnetischen Umklappvorgangs entwickelten die Forschenden nun eine zeitaufgelöste Messung, mit der sie die extrem schnellen Änderungen Schritt für Schritt betrachten können. Dafür nutzten sie die Röntgenstrahlung der Synchrotron Lichtquelle Schweiz SLS am PSI. Den Forschenden gelang eine Reihe von Momentaufnahmen, die zeitlich nur 70 billionstel Sekunden auseinanderliegen. Ihre Bildrate pro Sekunde ist damit beinahe 600 Millionen Mal so hoch wie diejenige von Kinofilmen.

In ihrer Aufnahmereihe konnten die Wissenschaftler beobachten, wie die Richtung der Magnetisierung wechselt, das heißt, wie sich die winzigen Magnete umdrehen. Zunächst zeigt ihr Nordpol „nach oben“ und der Südpol „nach unten“, am Ende ist es andersherum.

Der PSI-Forscher Frithjof Nolting (links) mit Erstautor der Studie Loïc Le Guyader am Röntgenmikroskop an der Synchrotron Lichtquelle Schweiz SLS. Hier wurden die magnetischen Strukturen zeitaufgelöst abgebildet. (Bild: Paul Scherrer Institut / M. Fischer)

Eine Substruktur aus der Comic-Welt
Ihre verblüffende Beobachtung: Obwohl die magnetischen Quadrate so klein sind, dass der verwendete Laserpuls viele Quadrate gleichzeitig bestrahlt, drehte sich die Magnetisierung nicht flächendeckend um. Stattdessen bildeten sich innerhalb der beleuchteten Quadrate Substrukturen aus. Die Bildgebung der Forschenden zeigte dabei die eine Magnetisierungsrichtung schwarz, die andere weiß. Als die Forschenden Quadrate mit einer Kantenlänge von fünf Mikrometern, also fünf Tausendsteln eines Millimeters, betrachteten, sahen sie eine besonders skurrile magnetische Substruktur: Plötzlich erschien schwarz auf weißem Grund ein winziges Batman-Logo.

Die Forschenden sehen hierin jedoch weder eine geheime Comic-Botschaft noch ein Problem, sondern eine Chance. Sie erklären die Batman-Figur durch die Effekte von Brechung und Interferenz des Laserlichts – kurz: der Wechselwirkung des Lichts mit den Mikro-Quadraten. In einzelnen Bereichen der Quadrate wurde dadurch mehr Laserlicht absorbiert als in anderen. Nur dort fand deshalb die magnetische Schaltung statt. „Wir haben da eine faszinierende Wechselwirkung entdeckt“, fasst Nolting zusammen.

Die Festplatte der Zukunft: kleiner und schneller
Durch anders geformte Magnete ließen sich demnach auch andere Figuren als das Batman-Logo erzeugen. Damit wiederum ließe sich nicht nur jeder Kleinstmagnet, sondern sogar nur ein Teil davon als einzelnes, beschreibbares Computer-Bit verwenden. „Dies könnte der Weg sein, um eines Tages noch mehr Daten auf noch kleinere Festplatten zu speichern“, sagt Loïc Le Guyader, der ebenfalls an den PSI-Experimenten beteiligt war. Inzwischen arbeitet er am Helmholtz-Zentrum Berlin.

Doch nicht nur in der winzigen Größe der Substrukturen, auch in der Geschwindigkeit des magnetischen Schaltungsprozesses haben die Forschenden beachtliche Werte gemessen: Dank der Licht-Schaltung läuft dieser Prozess enorm schnell ab und ist in weniger als 100 billionstel Sekunden abgeschlossen.

Kleiner und schneller – dazu gehören eine geringe Größe der Speicherbits und eine hohe magnetische Schaltgeschwindigkeit –, das sind die beiden Merkmale, die in der Festplattenindustrie zählen. Die Forschenden am PSI könnten den Ingenieuren einen Weg für zukünftige Entwicklungen aufgezeigt haben.

Beteiligte Institutionen und Förderung
An dem Projekt waren Forschende folgender Institutionen beteiligt: Paul Scherrer Institut, Schweiz; Radboud Universität Nijmegen, Institut für Moleküle und Materialien, Niederlande; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Deutschland; Fakultät für Wissenschaft und Technologie, Nihon-Universität, Japan.

Die Arbeit wurde zum Teil unterstützt von: 7. EU-Rahmenprogramm (UltraMagnetron, Femtospin, Fantomas, Femtomagnetism), niederländische Forschungsförderung (NWO, FOM, STW) und japanische Forschungsförderung (MEXT).

Text: Laura Hennemann

Originalveröffentlichung:
Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures. L. Le Guyader, M. Savoini, S. El Moussaoui, M. Buzzi, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel and F. Nolting, Nature Communications, 12 January 2014, DOI: 10.1038/ncomms6839 (Link: http://dx.doi.org/10.1038/ncomms6839).

Kontakt/Ansprechpartner:
Prof. Dr. Frithjof Nolting
Labor für Synchrotron-Strahlung – Physik der kondensierten Materie
Paul Scherrer Institut
5232 Villigen PSI, Schweiz
E-Mail: frithjof.nolting@psi.ch.

Dr. Loïc Le Guyader
Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung
Helmholtz-Zentrum Berlin für Materialien und Energie
14109 Berlin, Deutschland
E-Mail: loic.le_guyader@helmholtz-berlin.de.

Anzeige

Das könnte Sie auch interessieren

Anzeige

Weiterbildung

LIMS-Forum 2017

IT-Experten, LIMS-Anbieter, LIMS-Nutzer. Seit 20 Jahren trifft sich dieser Teilnehmerkreis jedes Jahr beim LIMS-Forum, um sich über den neuesten Stand der Technik und die Digitalisierung im Labor auszutauschen.

mehr...
Anzeige

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite