Erzeugung identischer Photonen

Basler Forscher entwickeln ideale Einzelphotonenquelle

Physiker der Universität Basel haben mithilfe eines Halbleiter-Quantenpunktes eine neuartige Lichtquelle entwickelt, die einzelne Photonen aussendet. Erstmals ist es den Forschern gelungen, einen Strom identischer Photonen zu erzeugen.

Bild eines Halbleiter-Quantenpunktes, der einen Zug einzelner und identischer Photonen emittiert. (© Universität Basel)

Eine Einzelphotonenquelle sendet nie zwei oder mehr Photonen gleichzeitig aus. Wichtig sind einzelne Photonen in der Quanteninformationstechnologie, die beispielsweise im Quantencomputer Anwendung findet. Neben Helligkeit und Robustheit der Lichtquelle ist vor allem die Ununterscheidbarkeit der Photonen entscheidend. Das bedeutet insbesondere, dass alle Photonen die gleiche Farbe haben müssen. Eine solche Quelle von identischen Einzelphotonen zu realisieren, gestaltete sich bisher als sehr anspruchsvoll.

Vielversprechende Kandidaten für eine solche Einzelphotonenquelle sind sogenannte Quantenpunkte aus Halbleitermaterialien. Ein Quantenpunkt ist eine Ansammlung von wenigen Hunderttausend Atomen, die sich unter bestimmten Bedingungen in einem Halbleiter selbstständig formiert. Einzelne Elektronen können in solchen Quantenpunkten eingefangen und auf engstem Raum eingeschlossen werden. Das Aussenden eines einzelnen Photons erfolgt beim Zerfall eines angeregten Quantenzustandes.

Rauschen im Halbleiter

Ein Team von Wissenschaftlern um Dr. Andreas Kuhlmann und Prof. Richard J. Warburton von der Universität Basel konnten bereits in vorangegangen Veröffentlichungen zeigen, dass die Ununterscheidbarkeit der Photonen durch fluktuierende Kernspins der Atome des Quantenpunktes reduziert wird. Nun ist es ihnen erstmals gelungen die Kernspins so zu kontrollieren, dass selbst Photonen, die mit sehr großem zeitlichem Abstand ausgesandt wurden, die gleiche Farbe aufweisen.

Anzeige

Einzelphotonenquellen könnten Anwendung in der Quantenkryptographie und Quantenkommunikation finden – Technologien, durch die Berechnungen möglich wären, die für heutige Computer unmöglich sind.

Die Studie wurde durch den Nationalen Forschungsschwerpunkt „QSIT – Quantenwissenschaften und –technologie“ unterstützt, an dem die Universität Basel als Co-Leading House beteiligt ist.

Originalbeitrag:
Andreas V. Kuhlmann, Jonathan H. Prechtel, Julien Houel, Arne Ludwig, Dirk Reuter, Andreas D. Wieck, und Richard J. Warburton: Transform-limited single photons from a single quantum dot. Nature Communications 6:8204 (2015). DOI: 10.1038/ncomms9204.
Weitere Informationen:
Dr. Andreas Kuhlmann, Universität Basel. Departement Physik, E-Mail: andreas.kuhlmann@unibas.ch.

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite