Lasertechnik

Laserblitze erzeugen Nano-Antennen

Nur zwei kurze Laserblitze benötigt man an der TU Wien, um an einer Aluminium-Oberfläche Nano-Strukturen zu erzeugen, die den photoelektrischen Effekt des Materials drastisch verstärken.

Beschuss mit Laserpulsen lässt erst Krater (oben, Mitte), dann Nanoantennen (unten) wachsen. (Bild: TU Wien)

Wenn man fest mit einem zentimetergroßen Hammer auf eine Metallplatte schlägt, kann man nicht erwarten, dass man dadurch millimeterfeine Kunstgravuren hinterlässt. Ein vergleichbares Kunststück gelingt allerdings an der TU Wien mit Hilfe von Laserpulsen: Beschießt man Metalloberflächen auf die richtige Weise mit Laserlicht, entstehen feine Antennenstrukturen, die um Größenordnungen kleiner sind als der Durchmesser des Laserpulses. Diese Nano-Antennen eigenen sich hervorragend zum Aussenden von Elektronen.

Spitze Strukturen fördern den photoelektrischen Effekt
Wenn Licht auf eine Metalloberfläche auftrifft, können Elektronen herausgelöst werden. Dieser "photoelektrische Effekt" ist schon lange bekannt. Doch nicht überall fällt es den Elektronen gleichermaßen leicht, die Oberfläche zu verlassen: Weist sie feine, spitze Strukturen auf, lösen sich deutlich mehr Elektronen heraus, als das bei einer völlig glatten Oberfläche möglich wäre. Genau in den Spitzen tritt nämlich ein besonders starkes elektrisches Feld auf. Dieser Effekt ähnelt der Tendenz eines Blitzes, in hohen, spitzen metallischen Masten einzuschlagen.

Anzeige

Besonders stark ist dieser Effekt, wenn die Spitze auch noch einer Mulde sitzt, die einfallende Wellen zur Spitze hin fokussiert. Die Herstellung solcher Strukturen gelang nun Prof. Wolfgang Husinsky vom Institut für Angewandte Physik der TU Wien in Zusammenarbeit mit führenden Fachkollegen aus Russland (Sergey Makarov,Sergey Kudryashov, Lebedev Physics Institute Russian Academy of Sciences).

"Je nachdem, welche Laserparameter man wählt, können Laserpulse zu Nano-Strukturen verschiedenster Art führen", sagt Wolfgang Husinsky. Ausschlaggebend sind die Laserleistung, die Pulszeit, die genaue Form des Laserpulses sowie die Anzahl der Pulse, die man auf die Oberfläche abfeuert. Am Institut für Angewandte Physik der TU Wien wird schon lange an extrem kurzen Laserpulsen geforscht: Weniger als 10 fs (10-15 s) dauern die kürzesten Lichtblitze in Wolfgang Husinskys Labor.

Erst ein Krater, dann eine Antenne
Der Erfolg stellte sich mit einer Kombination aus zwei Laserpulsen ein: Der erste hinterlässt kreisrunde Krater mit einem Durchmesser von etwa 1,3 µm. Schuld daran sind Plasmonen und Polaritonen - Anregungen der Elektronen im Metall und Kopplungen von elektrischen Feldern mit Atomschwingungen. Der Bereich, der vom Laserpuls beleuchtet wird, ist viel größer als diese Krater, so kann also ein einziger Laserpuls eine Vielzahl an Kratern erzeugen.

Wenn man dann dieselbe Stelle noch einmal mit einem weiteren Laserpuls beschießt, dann bildet sich bei geeigneten Laserparametern in den Kratern eine Spitze aus. Das elektrische Feld des Lasers wird durch die Form des Kraters lokal verändert, und dieses starke Feld wird durch die nadelförmige Antenne, die bloß einige Dutzend Nanometer dick ist, weiter verstärkt Diese Nano-Antennen im Mikro-Krater sind perfekt für die Elektronenemission. Wenn Licht auf diese Nanostrukturen fällt, wird es vom Krater auf die Spitze fokussiert, ähnlich wie ein Parabolschirm die Wellen eines Satelliten auf die Fernsehantenne lenkt. So ist eine fünfzigmal höhere Elektronenemission möglich als bei einer völlig ebenen und glatten Metalloberfläche.

Vom Aluminium bis zum Protein
"Die Materialbearbeitung mit ultrakurzen Laserpulsen ist ein boomendes Forschungsgebiet, das bei vielen verschiedene Materialien tolle Anwendungsmöglichkeiten verspricht", ist Wolfgang Husinsky überzeugt. Im Rahmen des von der österreichischen Forschungsgesellschaft FFG geförderten Projektes gemeinsam mit einem Partnerunternehmen, der Femtolasers Produktions-GmbH, untersucht er mit seinem Team Strukturierungsmöglichkeiten von Metallen bis hin zu organischen Materialien wie Kollagen, dem Hauptbestandteil unserer Knochen.

Die Strukturen, die mit Laserpulsen auf Oberflächen erzeugt werden, sind meist winzig, doch verhältnismäßig große Flächen können in einem einzigen Schritt bearbeitet werden. In bestimmten Fällen lassen sich zentimetergroße periodische Strukturen erzeugen. Das ist allerdings nur möglich, wenn man die mikroskopischen Abläufe auf der Festkörperoberfläche genau versteht: "Wenn wir eine Folge von mehreren Laserpulsen auf die Oberfläche abfeuern, dann gibt es eine riesengroße Anzahl an Parametern, die man einstellen kann", sagt Wolfgang Husinsky. "Die Zahl der Pulse, die Intensität, die Dauer jedes einzelnen Pulses - es ist völlig undenkbar, jede mögliche Parameter-Kombination durchzuprobieren, um das optimale Resultat zu erhalten."

Man wird also auch weiterhin gut durchdachte Grundlagenexperimente und Simulationsrechnungen benötigen, um ähnliche Erfolge erzielen können wie mit den Nano-Antennen.

Die Forschungsergebnisse wurden nun im Fachjournal Laser Physics Letter publiziert: Laser Physics Letters Vol 11, Number 6 , 1 June 2014 , 065302.

Rückfragehinweis:
Prof. Wolfgang Husinsky
Institut für Angewandte Physik
Technische Universität Wien
Wieder Hauptstrasse 8-10
1040 Wien, Austria
husinsky@iap.tuwien.ac.at

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Integriertes Datenmanagement

Ihre im Labor erzeugten Daten können Sie sicher und strukturiert in einem System sammeln. NEC und labfolder bieten ein Mittel für die effiziente Verwaltung großer wissenschaftlicher Datensätze an.

mehr...
Anzeige

Quantenkaskadenlaser

Rekord bei Terahertzpuls-Erzeugung

Einer Gruppe von Forschern der TU Wien und der ETH Zürich gelang es, ultrakurze Terahertzlichtpulse zu erzeugen. Diese nur wenige Pikosekunden langen Pulse sind hervorragend für spektroskopische Anwendungen geeignet und ermöglichen ultragenaue...

mehr...
Anzeige
Anzeige

Highlight der Woche

Integriertes Datenmanagement
Die Herausforderung bei der Digitalisierung des Laboralltags besteht im Wechsel von Papierlaborbüchern und Computerdateien zu einer Datenmanagementsoftware, die große Datensätze strukturiert innerhalb eines einzigen Systems sammelt.

Zum Highlight der Woche...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite