Allgemeine Relativitätstheorie feiert 100. Geburtstag

Einstein rettet Schrödingers Katze

Einsteins Allgemeine Relativitätstheorie feiert ihren 100. Geburtstag. Selbst heute noch fasziniert sie PhysikerInnen und Laien zugleich. Eine internationales Team um Caslav Brukner von der Universität Wien, Igor Pikovski von der University of Harvard und WissenschafterInnen von der University of Queensland haben nun entdeckt, dass die Relativitätstheorie auch ein ganz anderes, ungewöhnliches Phänomen erklären kann: den Übergang von der Quantenmechanik zu unserer alltäglichen, klassischen Welt.

Illustration eines Moleküls im Beisein von Zeitdilatation aufgrund eines Schwerefeldes. Das Molekül ist in einer räumlichen Quantensuperposition, aber die Zeitdilatation zerstört diesen Quanteneffekt. (Copyright: Igor Pikovski, Harvard-Smithsonian Center for Astrophysics)

Im Jahr 1915 wurde unser Verständnis der Gravitation durch Einsteins Allgemeine Relativitätstheorie revolutioniert. Einstein fand heraus, dass Gravitation durch die Krümmung von Raum und Zeit verursacht wird. In seiner Theorie ist der Zeitfluss nicht einfach konstant, sondern wird durch Masse beeinflusst. Dieser Effekt, der auch „Zeitdilatation" genannt wird, bewirkt, dass sich die Zeit in der Nähe von massiven Objekten verlangsamt. Zeitdilatation zeigt sich sogar auf der Erde: Menschen, die im Erdgeschoss arbeiten, altern langsamer als ihre Kollegen im ersten Stock, und zwar um etwa 10 Nanosekunden pro Jahr.

Dieser Effekt ist winzig klein, wurde jedoch mit präzisen Atomuhren bestätigt. Jetzt entdeckte ein internationales ForscherInnenteam der Universität Wien, der Harvard University und der University of Queensland, dass Einsteins Verlangsamung der Zeit auch ein ganz anderes Phänomen erklären kann: den Übergang zwischen Quantenmechanik zu unserer klassischen, alltäglichen Welt.

Anzeige

Wie die Gravitation die Quantenmechanik beeinflusst
Quantenmechanik ist neben der Relativitätstheorie die zweite große Entdeckung der Physik des 20. Jahrhunderts. Sie beschreibt, wie sich die kleinsten Bausteine der Natur verhalten und sagt ungewöhnliche Phänomene voraus. Wenn man diese auf große Skalen überträgt, scheinen sie paradox, wie das Beispiel von Schrödingers Katze aufzeigt: Die Quantenphysik sagt vorher, dass die Katze nicht lebendig und auch nicht tot ist, sondern sich in einer sogenannten Quantensuperposition von beiden Zuständen befindet, vereinfacht ausgedrückt ist sie beides gleichzeitig. Solche Phänomene konnten jedoch bis jetzt nur bei winzigen Teilchen beobachtet werden und nie bei größeren und komplexeren Objekten wie einer Katze. Deswegen sind Physiker überzeugt, dass Quantenphänomene bei größeren Objekten unterdrückt werden, üblicherweise durch Wechselwirkungen mit anderen Teilchen.

Das Forschungsteam geleitet von Caslav Brukner von der Universität Wien und dem Institut für Quantenoptik und Quanteninformation fand nun heraus, dass Einsteins Zeitdilatation auch beim Übergang zur klassischen Physik eine Rolle spielt. Die ForscherInnen berechneten, dass – sobald sich die kleinsten Teilchen zu größeren Objekten wie z.B. zu Molekülen und schließlich zu Staubteilchen oder Mikroorganismen zusammenfügen – die Zeitdilatation aufgrund der Erde deren Quanteneigenschaften unterdrücken kann. Die kleinen Teilchen bewegen sich immer ein kleines bisschen, sie „zittern". Und dieses „Zittern" wird durch die Zeitdilatation beeinflusst: Nahe dem Erdboden wird es langsamer, in größeren Höhen wird es schneller. Die ForscherInnen zeigten, dass dieser Effekt die Quantensuperpositionen zerstört und sich größere Objekte daher nicht mehr quantenmechanisch verhalten können.

Auf dem Weg zu neuartigen Quantenexperimenten:
„Es ist recht überraschend, dass die Gravitation eine Rolle für die Quantenphysik spielen kann", so Igor Pikovski, Erstautor der Publikation und derzeit am Harvard-Smithsonian Center for Astrophysics tätig. „Gravitation wird üblicherweise auf astronomischen Skalen studiert, aber sie scheint selbst auch für die winzigsten Bausteine der Natur wichtig zu sein". Caslav Brukner fügt hinzu: "Auf kosmologischen Skalen ist die Gravitation viel stärker, und es ist immer noch eine offene Frage, ob die Resultate auch dort eine Rolle spielen."

Die Berechnungen der ForscherInnen zeigen, wie größere Teilchen ihre Quanteneigenschaften aufgrund ihrer eigenen Zusammensetzung verlieren können, wenn man die Zeitdilatation berücksichtigt. Dieser Effekt sollte in naher Zukunft auch experimentell messbar sein und damit zu einem besseren Verständnis der faszinierenden Wechselwirkung zwischen den zwei großen Theorien des 20. Jahrhunderts beitragen: der Quantenmechanik und der Allgemeinen Relativitätstheorie.

Originalpublikation:
„Universal decoherence due to gravitational time dilation". I. Pikovski, M. Zych, F. Costa, C. Brukner. Nature Physics (2015). DOI: 10.1038/nphys3366

Wissenschaftlicher Kontakt:
Univ.-Prof. Mag. Dr. Caslav Brukner
Institut für Quantenoptik und
Quanteninformation Wien
Universität Wien
1090 Wien, Boltzmanngasse 5
caslav.brukner@univie.ac.at
www.quantumfoundations.org

Dr. Igor Pikovski
Institute for Theoretical Atomic,
Molecular and Optical Physics (ITAMP)
Harvard-Smithsonian Center for Astrophysics
60 Garden St, MS-14; Cambridge MA 02138
igor.pikovski@cfa.harvard.edu
www.cfa.harvard.edu/~igor.pikovski

Anzeige

Das könnte Sie auch interessieren

Anzeige

2D-Stringtheorie

Unendlich ist ungefähr zwei

An der TU Wien wird untersucht, wie die Relativitätstheorie aussieht, wenn man unendlich viele Raumdimensionen annimmt. Erstaunlicherweise ergeben sich daraus Resultate einer 2D-Stringtheorie. Diese Entdeckung soll nun helfen, Schwarze Löcher besser...

mehr...
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite