Labo Online - Analytic, Labortechnik, Life Sciences
Home> Analytik> Materialprüfung>

Terahertz-Quelle für Scanner und Qualitätskontrolle

Neuartige Terahertz-QuelleNeue Möglichkeiten für Scanner und Qualitätskontrolle

Terahertz-Wellen bieten zahlreiche Anwendungsmöglichkeiten, zum Beispiel in Körperscannern, sie sind bisher jedoch schwierig und nur eingeschränkt zu erzeugen. Jülicher Wissenschaftler haben mit internationalen Partnern ein neuartiges Konzept zur Herstellung dieser elektromagnetischen Strahlung realisiert.

sep
sep
sep
sep
Terahertz-Emitter

Ihr Emitter in Form einer dünnen Metallschicht kann das gesamte Terahertz-Spektrum erzeugen. Möglich macht dies die geschickte Nutzung der Spineigenschaft von Elektronen. Auf Basis dieses Prinzips lassen sich effizientere Quellen bauen, die erstmals lückenlos über die große Bandbreite von 1 bis 30 THz abstrahlen. Der neue Emitter ist zudem kompakter und kostengünstiger herstellbar.

Terahertz-Wellen liegen im elektromagnetischen Spektrum zwischen den Mikrowellen und dem infraroten Licht im Frequenzbereich von etwa 1 bis 30 THz. Die Strahlung ist äußerst nützlich, denn sie durchdringt viele Materialien, darunter Textilien und Kunststoffe, und wird von anderen Substanzen auf charakteristische Weise absorbiert. Anders als etwa Röntgenstrahlen sind Terahertz-Strahlen gesundheitlich unbedenklich. Sie finden deshalb zum Beispiel in Körperscannern an Flughäfen Verwendung oder werden zur Qualitätskontrolle von Nahrungsmitteln genutzt.

Anzeige

Ein Hindernis für eine breitere Nutzung ist, dass Apparate, mit denen sich das gesamte Terahertz-Spektrum lückenlos erzeugen lässt, teuer und groß sind. Wissenschaftler des Forschungszentrums Jülich und Partner aus Deutschland, den USA, Schweden und Frankreich haben nun einen Terahertz-Emitter realisiert, der skalierbar ist und sich für Tischgeräte eignet. „Unser Prototyp erzeugt das gesamte Terahertz-Spektrum von 1 bis 30 THz und ist dabei energieeffizienter, einfacher zu bedienen und günstiger in der Herstellung als bisherige Quellen", freut sich Prof. Dr. Yuriy Mokrousov, Leiter der Helmholtz-Nachwuchsgruppe für Topologische Nanoelektronik am Forschungszentrum Jülich. „Wir erwarten einen raschen und breiten Einsatz."

Die neuartige Quelle nutzt einen Femtosekundenlaser, der 80 Millionen ultrakurze Lichtblitze pro Sekunde erzeugt. Herkömmliche Apparate benötigen deutlich leistungsstärkere Laser, die viel teurer, aufwendiger und größer sind und mehr Energie verbrauchen.

Der neuartige Emitter hat Ähnlichkeit mit einer Photodiode oder auch Solarzelle: Die Beleuchtung des Materials mit einem ultrakurzen Laserblitz erzeugt einen Stromstoß, der dann einer Sendeantenne gleich einen elektromagnetischen Impuls abstrahlt. Der neuartige Emitter besteht im Gegensatz zu Solarzellen aus einem nur 5,8 nm dünnen Metallfilm, so dass der Stromstoß extrem kurz ist und die Terahertz-Strahlung im Emittermaterial kaum abgeschwächt wird (s. Grafik für weitere Erläuterungen). Nachdem die Forscher die verwendeten Metalle und Schichtdicken systematisch optimierten, reicht nun relativ schwache Laserstrahlung zur Erzeugung des gesamten Terahertz-Spektrums von 1 bis 30 THz aus.

Mokrousovs Kollege Dr. Frank Freimuth erklärt eine weitere wichtige Zutat der neuen Terahertz-Quelle: „Der Emitter funktioniert so gut, weil wir zusätzlich zur Ladung der Elektronen auch ihren Spin nutzen." Der Spin ist eine magnetische Eigenschaft der Elektronen und dafür verantwortlich, dass sich Strom in magnetischen Metallen anders verhält als in nichtmagnetischen. Dieser Effekt wird in der neuen Quelle geschickt ausgenutzt, um den Elektronentransport so zu steuern, so dass die Terahertz-Welle besonders gut abgestrahlt werden kann. Mit einem in Jülich entwickelten Rechencode halfen die beiden Physiker, geeignete Materialien auszuwählen und die experimentellen Ergebnisse zu verstehen.

Originalveröffentlichung:
Efficient metallic spintronic emitters of ultrabroadband terahertz radiation; T. Seifert et al.; Nature Photonics, DOI: 10.1038/nphoton.2016.91.

Ansprechpartner:
Prof. Dr. Yuriy Mokrousov
Quanten-Theorie der Materialien (PGI-1/IAS-1), Forschungszentrum Jülich
E-Mail: y.mokrousov@fz-juelich.de

Dr. Frank Freimuth
Quanten-Theorie der Materialien (PGI-1/IAS-1), Forschungszentrum Jülich
E-Mail: f.freimuth@fz-juelich.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Terahertzquelle

Kostengünstiger trotz höherer AuflösungIntensives Terahertzlicht

Forscher am PSI konnten mit handelsüblicher Kamera-Technik Terahertzlicht visualisieren. Damit eröffnen sie eine kostengünstige Alternative zum bisher üblichen Verfahren. Zugleich konnten sie die Bildauflösung um das 25-fache verbessern.

…mehr
Terahertz-Beschleunigermodule passen problemlos in eine Hand. (Bild: DESY / Heiner Müller-Elsner)

Physiker schrumpfen TeilchenbeschleunigerPrototyp demonstriert Machbarkeit von Terahertz-Beschleunigern

Ein interdisziplinäres Forscherteam hat den ersten Prototyp eines Miniatur-Teilchenbeschleunigers gebaut, der mit Terahertz- anstelle von Hochfrequenz-Strahlung funktioniert. Ein einzelnes Beschleunigungsmodul ist dabei nur 1,5 cm lang und 1 mm dünn.

…mehr
Superkritisches Wasser

Superkritischer Zustand von WasserForscher sagen Terahertz-Spektren mit Computersimulationen voraus

Mit Molekulardynamik-Simulationen haben Forscher die Eigenschaften von superkritischem Wasser analysiert. Sie zeigten, welche Struktur das Wasserstoffbrückennetzwerk in unterschiedlichen superkritischen Zuständen annimmt und simulierten die zugehörigen Terahertz-Spektren. Das kann in Zukunft helfen, experimentelle Befunde zu deuten.

…mehr
Imaging: Segmentierung korrelativer Mikroskopiedaten

ImagingSegmentierung korrelativer Mikroskopiedaten

Die Zeiss ZEN Intellesis-Plattform ermöglicht eine integrierte Segmentierung mikroskopischer 2D- und 3D-Datensätze für den Routineanwender. Sie ist für alle Licht-, Konfokal-, Röntgen-, Elektronen- und Ionenmikroskope von Zeiss erhältlich.

 

…mehr
Materialanalyse: Mikroskop bietet integrierte chemische Analyse

MaterialanalyseMikroskop bietet integrierte chemische Analyse

Mit dem neuen DM6 M LIBS Mikroskop für die Materialanalyse und -prüfung von Leica Microsystems lassen sich zwei wesentliche Kennzeichen von Materialien in nur einem Arbeitsgang analysieren: Mikrostruktur und chemische Zusammensetzung.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung