Mikroskopie und Bildauswertung

Ultramikroskop lüftet Geheimnisse

Einblicke in die Entwicklungsgenetik der Fruchtfliege
Nina Jährling wurde für ihre Arbeiten mit dem Theodor-Körner-Preis ausgezeichnet. Der Theodor-Körner-Fonds wurde 1953 anlässlich des 80. Geburtstages des damaligen Bundespräsidenten Theodor Körner gestiftet. Seitdem werden jährlich herausragende Arbeiten aus Wissenschaft und Kunst ausgezeichnet.


Wir kennen sie als ungeliebten Gast in unseren Obstschüsseln: Die Fruchtfliege, Drosophila melanogaster, ist eines der wichtigsten Versuchstiere für die Genetik. Mit Hilfe eines Ultramikroskops der TU Wien wurden die Flugmuskeln der Drosophila nun genau erforscht. Dabei wurde ein genetischer Schalter entdeckt, der über den Muskeltyp entscheidet.

Durch ein bestimmtes Protein lassen sich Gene ein- und ausschalten, die für einen faserartigen Muskeltyp verantwortlich sind – und genau diesen Muskeltyp braucht Drosophila zum Fliegen. „Unsere Mikroskopiermethode erlaubt es, in kurzer Zeit viele verschiedene Fliegen zu untersuchen – und zwar dreidimensional, mit sehr guter Auflösung“, berichtet Nina Jährling vom Institut für Festkörperelektronik (Fakultät für Elektrotechnik und Informationstechnik). Die Bilder, die dabei entstehen, sind eine wichtige Arbeitsgrundlage für Biologen, die sichtbare Unterschiede im Muskelgewebe dann mit genetischen Veränderungen in Verbindung bringen können. Eine ganze Reihe von Forschungsinstituten war mit den biologischen und biochemischen Aspekten dieses Projekts befasst: Das Max-Planck-Institut für Biochemie (Martinsried, Deutschland, Arbeitsgruppe „Muscle Dynamics“ unter Frank Schnorrer), die Friedrich-Alexander-Universität in Erlangen-Nürnberg und das Institut für Molekulare Pathologie (IMP, Wien).

Anzeige

Nina Jährling und Professor Hans-Ulrich Dodt, der Leiter des Lehrstuhls für Bioelektronik an der TU Wien, arbeiten außerdem eng mit der Medizinischen Universität Wien zusammen. An der TU Wien wurden die Fliegen Schicht für Schicht mit Laserlicht durchleuchtet. Das Fliegen-Gewebe beginnt dabei zu fluoreszieren, und das dadurch ausgesandte Licht kann aufgezeichnet und am Computer zu einem 3D-Modell zusammengesetzt werden.


Gewebe fluoreszieren lassen

Die Ultramikroskopie-Technik nutzt das Prinzip der Fluoreszenz: Gewisse Substanzen senden Licht aus, wenn sie mit Licht einer bestimmten Wellenlänge bestrahlt werden. Viele biologische Gewebe fluoreszieren bis zu einem gewissen Grad auf ganz natürliche Weise (das bezeichnet man als Autofluoreszenz). Soll ein ganz bestimmtes biologisches Gewebe untersucht werden, kann man spezielle Tiermodelle verwenden, deren Genom ein Gen für ein fluoreszierendes Protein trägt. Auch fluoreszierende Antikörper oder ganz bestimmte Proteine (Lektine) kann man spezifisch an bestimmte Zielmoleküle andocken lassen. Damit werden die gesuchten Strukturen optisch sichtbar.

Ein derart fluoreszierendes Gewebe kann dann Schicht für Schicht mit Laserstrahlen seitlich durchleuchtet werden. Nur in der dünnen beleuchteten Schicht wird Fluoreszenz angeregt. Aus den Einzelbildern der einzelnen Schichten entsteht dann am Computer eine dreidimensionale Rekonstruktion – mit einer Detailtiefe wie es etwa für Computertomographen unerreichbar wäre. Mit herkömmlichen Methoden musste man relativ große Gewebestrukturen vorher mechanisch in Scheiben schneiden und nacheinander untersuchen. Die Laserstrahlen hingegen dringen ins Gewebe ein, ohne es zu zerstören. Die Idee dafür stammt vom MPI für Psychiatrie in München, wo Nina Jährling früher tätig war. Nun wird das Ultramikroskop auch in Wien weiterentwickelt und in der Praxis erprobt. Das durchleuchtete Gewebe sollte möglichst lichtdurchlässig sein. Die Proben werden daher vor der Untersuchung entwässert und in Lösungen eingelegt, die ganz ähnliche optische Eigenschaften haben wie das Gewebe selbst – dadurch wird die Probe beinahe transparent. Nina Jährling führte Versuchsreihen zu neuen Entwässerungs- und Klärungstechniken durch, die in ein TU-Patent miteingingen.


Fruchtfliegen und Menschenherzen

Wenn ein Gen, das für einen bestimmten Muskeltyp verantwortlich ist, in zwei verschiedenen Fliegen in der selben Form vorkommt, dann bedeutet das noch lange nicht, dass beide Fliegen denselben Muskeltyp entwickeln. Ein spezielles Protein – der Transkriptionsfaktor Salm – entscheidet darüber, ob die entsprechenden Gene aktiviert werden oder nicht. Zerstört man diesen Transkriptionsfaktor, dann bilden die Fliegen den notwendigen Muskeltyp nicht aus und können daher nicht fliegen. Besonders interessant ist das deshalb, weil auch das menschliche Herz ähnliche Muskeltypen aufweist. Es ist daher denkbar, dass gewisse Herz-Abnormalitäten bei Menschen oder Tieren einen ähnlichen biochemischen Hintergrund haben.


Dr. Florian Aigner

Büro für Öffentlichkeitsarbeit

Technische Universität Wien

Operngasse 11, 1040 Wien

T: +43-1-58801-41027

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Multiphotonenmikroskopie

Tiefe Einsichten ins Leben

Das Multiphotonenmikroskop SP8 DIVE (Deep In Vivo Explorer) enthält einige Neuentwicklungen für nichtlineare Mikroskopie, mit denen insbesondere die spektrale Auswahl bei Mehrfach-Färbungen wesentlich einfacher und effizienter gelingt.

mehr...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite