Diese Seite empfehlen:
An (E-Mail Adresse des Empfängers)
Ihr Name (Optional)
Von (Ihre E-Mail Adresse)
Nachricht (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

Biolumineszenz

Enzymkette für das Erzeugen leuchtender Lebewesen entdeckt

Ein Forscherteam identifizierte die Reaktionskette für die Biolumineszenz von Pilzen und schleuste sie in ein anderes Lebewesen ein.

Der Pilz Neonothopanus nambi. © Prof. C. Stevani

Bei Tageslicht ist Neonothopanus nambi ein eher unscheinbarer brauner Pilz. Doch hinter der tristen Fassade verbirgt sich eine Überraschung: Nachts leuchtet der Pilz geisterhaft grün. Neonothopanus nambi ist eine von über 100 Pilzarten, die Licht ausstrahlen. Aristoteles dokumentierte dieses Phänomen der Biolumineszenz bereits, als er glühende, verrottende Baumrinde beschrieb.

Jetzt haben WissenschaftlerInnen erstmals den biochemischen Prozess identifiziert, durch den biolumineszierende Pilze leuchten. Aber die ForscherInnen gingen noch weiter: Indem sie die drei Gene, die für die Lumineszenz notwendig sind, in eine nicht-leuchtende Hefe einbrachten, schufen sie einen künstlich leuchtenden Eukaryoten. Fyodor Kondrashov, Professor am Institute of Science and Technology Austria (IST Austria), ist Mitautor der aktuell in PNAS veröffentlichten Studie, die von Ilia Yampolsky am Institut für Bioorganische Chemie der Russischen Akademie der Wissenschaften in Moskau geleitet wurde.

Flatternde Glühwürmchen und leuchtende Pilze auf dem Waldboden sind unter den wenigen Dingen, die man in einer dunklen Nacht tief im brasilianischen Wald sieht. Beide verhalten sich wie lebende Nachtlichter dank der Biolumineszenz, einem natürlichen Phänomen, bei dem eine Substanz namens Luciferin mit Hilfe des Enzyms Luciferase oxidiert wird und so Licht abgibt. Viele Lebewesen, von leuchtenden Würmen bis zu Tiefseefischen, sind biolumineszent. Bisher verstanden WissenschaftlerInnen den biochemischen Prozess, durch den Luciferin erzeugt wird, nur in Bakterien. Diese Wissenslücke behinderte Versuche, höhere Organismen wie Tiere und Pflanzen zum Leuchten zu bringen. Eine internationale Zusammenarbeit zwischen zwölf verschiedenen Institutionen unter der Leitung von Ilia Yampolsky, unter Beteiligung von Fyodor Kondrashov, Louisa Gonzalez Somermeyer und seinem früheren Gruppenmitglied Karen Sarkisyan, zeigte nun, wie der Eukaryot Neonothopanus nambi leuchtet.

Anzeige

Enzyme identifiziert
Die WissenschaftlerInnen fanden die Gene, die für die Biolumineszenz von Neonothopanus nambi verantwortlich sind. Durch das Screening von Genbibliotheken und mittels Genomanalyse identifizierte das Team die Enzyme, die für die Synthese von Luciferin benötigt werden. Sie zeigten, dass das Luciferin von Pilzen, also das Substrat für die Biolumineszenzreaktion, nur zwei enzymatische Schritte von einem vom Pilz erzeugten Stoffwechselprodukt, der Kaffeesäure, entfernt ist. Beim Vergleich von leuchtenden und nicht-leuchtenden Pilzen entdeckte Kondrashovs Team auch, wie Genduplikation die Biolumineszenz vor mehr als hundert Millionen von Jahren ermöglichte. Warum sich Biolumineszenz überhaupt entwickelt hat, ist noch unklar, sagt Kondrashov: „Ist Biolumineszenz vorteilhaft oder nur ein Nebenprodukt? Wir wissen es noch nicht. Es gibt Hinweise darauf, dass das Leuchten Insekten anzieht, die die Sporen verteilen. Aber ich halte diese Erklärung nicht für überzeugend."

Künstlich glühende Hefezellen in einem Reagenzglas. © Sergei Shakhov

Hefe zum Leuchten gebracht
Mit dem Wissen, wie biolumineszierende Pilze leuchten, brachten die ForscherInnen dann nicht-biolumineszierende Eukaryoten zum Scheinen. Sie bauten das Gen, das in Neonothopanus nambi für Luciferase kodiert, und drei weitere Gene, deren Produkte die Kaffeesäure in Luciferin umwandelt, in die nicht-biolumineszierende Hefe Pichia pastoris ein – und die Hefekolonien leuchteten. „Wir gaben der Hefe keine Chemikalie, die sie zum Leuchten bringt. Stattdessen gaben wir ihr die Enzyme, die sie benötigt, um ein bereits in der Hefe vorhandenes Stoffwechselprodukt in Licht umzuwandeln", erklärt Kondrashov.

Diese Entdeckung könnte breite Anwendung finden: von Geweben, die bei Veränderungen ihrer Physiologie leuchten, bis hin zu leuchtenden Tieren und Pflanzen. „Denken wir an Sci-Fi-Szenarien, in denen leuchtende Pflanzen Straßenlaternen ersetzen - das ist es. Das ist der Durchbruch, der dazu führen kann", resümiert Kondrashov, „es kann jedoch mehrere Jahre dauern, bis eine solche Pflanzen-Straßenleuchte entwickelt wird".

Informationen zum Institute of Science and Technology (IST Austria) in Klosterneuburg unter  www.ist.ac.at

Originalpublikation:
Genetically encodable bioluminescent system from fungi, Alexey A. Kotlobay et al., PNAS, 2018. www.pnas.org/content/early/2018/11/21/1803615115

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige

Forschungsprojekt "Nanofacil"

Enzyme resistenter machen

Ein Forschungsprojekt an der Jacobs University unter Leitung von Dr. Marcelo Fernandez-Lahore, Professor of Biochemical Engineering, soll zu einer Plattform für die erleichterte Weiterverarbeitung einer Vielzahl von biologischen Produkten führen.

mehr...

Mikrobiologie

Bakterielle Sporen mit „Gedächtnis“

Bakterielle Sporen speichern Informationen zur individuellen Wachstumsgeschichte ihrer Vorläuferzellen und verfügen somit über ein „Gedächtnis“, das die verschiedenen Phasen des Lebenszyklus von Bakterien miteinander verbindet. Dies hat ein...

mehr...