Elektronenorbitale in 3D

Das Unsichtbare sichtbar machen

Wissenschaftlern der Karl-Franzens-Universität Graz, des Forschungszentrums Jülich und der Physikalisch-Technischen Bundesanstalt ist es gelungen, Elektronenorbitale in allen drei Dimensionen experimentell zu erfassen. Für ihre Untersuchung nutzten sie die Weiterentwicklung einer Methode, mit der sie die Orbitale vor zwei Jahren bereits zweidimensional sichtbar machen konnten.

Prinzip der 3D-Rekonstruktion mittels Photoelektronenspektroskopie: Durch Photonen herausgelöste Elektronen aus der Elektronenhülle lassen Rückschlüsse auf die Orbitale zu. Mit unterschiedlichen Photonenenergien lässt sich die dreidimensional Struktur des Orbitals erfassen (© Forschungszentrum Jülich).

In der Physik werden Elektronen nicht nur als Teilchen, sondern auch als Wellen behandelt. Diese Wellennatur lässt sich über die räumliche Wellenfunktion, das Orbital, beschreiben. „Orbitale beinhalten Informationen über die räumliche Verteilung der Elektronen bei einer bestimmten Energie. Sind sie bekannt, lassen sich alle relevanten Eigenschaften eines Materials ableiten“, erklärt Assoz.-Prof. Dr. Peter Puschnig von der Karl-Franzens-Universität Graz. Doch die Gesetze der Quantenmechanik bringen es mit sich, dass man nicht direkt beobachten kann, wie sich ein Elektron als Welle ausbreitet.

Ein kanadisch-japanisches Wissenschaftler-Team zeigte im Jahr 2004 mithilfe eines hochenergetischen Lasers, dass sich diese Orbitalfunktion – zumindest für einfache zweiatomige Moleküle – über Umwege trotzdem abbilden lässt. Rund zehn Jahre später gelang es den Grazer und Jülicher Forschern erstmals, auch solche Orbitale zu erfassen, die sich über größere, komplexe Moleküle erstrecken. Für ihre Messungen nutzten sie eine Form der sogenannten Photoelektronenspektroskopie, die auf dem Photoeffekt beruht: Dabei wird eine Molekülschicht auf einer Silberoberfläche mit Photonen, also Lichtteilchen, beschossen, woraufhin sich die energetisch angeregten Elektronen herauslösen. „Diese fliegen danach nicht willkürlich durch den Raum, sondern lassen aufgrund der Winkel- und Energieverteilung Rückschlüsse auf die Molekülorbitale zu“, so Puschnig.

Anzeige

Mit einer Weiterentwicklung der Methode ist es den Wissenschaftlern nun gelungen, die Sichtbarkeit der Orbitale von der zwei- auf die dreidimensionale Ebene zu bringen. Dazu war es nötig, das Experiment mit verschiedenen Energien, also verschiedenen Wellenlängen des Lichts, im ultravioletten Bereich durchzuführen. „Mit unterschiedlichen Wellenlängen lassen sich zusätzliche räumliche Tiefeninformationen gewinnen, ähnlich wie mit einer Kamera, die ein Motiv wiederholt mit variabler Brennweite aufnimmt“, erläutert Prof. Stefan Tautz vom Forschungszentrum Jülich. Doch lange ließen sich die Daten, die aus unterschiedlichen Messreihen stammen, nicht zu einem räumlichen Modell vereinen. „Bislang konnten wir die gemessenen Intensitäten, die von verschiedenen Photonenenergien herrühren, nicht miteinander vergleichen“, berichtet Ao.Univ.-Prof. Dr. Michael Ramsey vom Institut für Physik der Uni Graz. „Zusammen mit der Energie ändert sich auch der Photonenfluss, also die absolute Zahl der eingehenden Photonen, die für die 3D-Rekonstruktion bekannt sein muss. Doch in der Regel lässt sich dieser Wert gar nicht genau erfassen“, ergänzt Dr. Sergey Subach vom Jülicher Peter Grünberg Institut (PGI-3).

Um vergleichbare Werte zu erhalten, installierten die Jülicher Forscher ihren Detektor an der Metrology Light Source (MLS) der Physikalisch-Technischen Bundesanstalt (PTB) in Berlin. „Unsere Synchrotronstrahlungsquelle ist weltweit eine der wenigen, die einen genau kalibrierten Photonenfluss bereitstellt“, erklärt Dr. Alexander Gottwald von der PTB. Anhand der Daten aus den kalibrierten Messungen konnten die Grazer Wissenschaftlern im Rahmen des Forschungsschwerpunkts „Modelle und Simulation“ anschließend die Elektronenverteilung in 3D rekonstruieren.

Damit hat das Forschungsteam aus Jülich, Graz und Berlin die Wellenfunktion, die sich im quantenmechanischen Sinne eigentlich gar nicht direkt beobachten lässt, dennoch sichtbar gemacht. Die Ergebnisse sind ein lang gesuchter Beleg für die herrschenden Modellvorstellungen. So bescheinigte etwa der Orbitaltheoretiker Kenichi Fukui, gemeinsam mit Roald Hoffmann 1981 mit dem Nobelpreis für Chemie ausgezeichnet, dem Konzept der Molekülorbitale im Jahre 1977 eine „somewhat unreal nature“ (Intern. J. Quantum Chem. 12, 277), also eine „irgendwie unwirkliche Natur“. Und wie Hoffmann 1999 feststellte, räumen selbst Theoretiker, die in ihrer Arbeit Orbitale tagtäglich benutzen, ihnen nicht die Realität ein, die sie verdienen: „[…] the physicists and chemists who use density functional theory so fruitfully have by and large shied away from attributing to […] orbitals the reality that (we think) they deserve”(J. am. Chem. Soc. 121, 3414).

Das Ergebnis ist darüber hinaus auch für die Physik relevant: „Unser Experiment liefert eine interessante neue physikalische Erkenntnis über den zugrundeliegenden Photoeffekt“, berichtet Stefan Tautz. Demnach lassen sich die Elektronen, die dabei herausgelöst werden, ganz ähnlich wie freie Elektronen beschreiben – eine Vorstellung, die man vor fast 50 Jahren aufgrund der angenommenen Streuung an den Atomkernen eigentlich schon verworfen hatte.

Originalpublikation
S. Weiß, D. Lüftner, T. Ules, E. M. Reinisch, H. Kaser, A. Gottwald, M. Richter, S. Soubatch, G. Koller, M. G. Ramsey, F. S. Tautz, and P. Puschnig, „Exploring three-dimensional orbital imaging with energy dependent photoemission tomography", Nature Communications (2015).

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Resistente Keime

Struktur eines Schlüsselenzyms bestimmt

Durch Gen-Übertragung können ganze Populationen von Krankheitserregern binnen kürzester Zeit gegen verschiedene Antibiotika resistent werden. Die neuesten Erkenntnisse zu Aufbau, Arbeitsweise und Eigenschaften eines an der Übertragung beteiligten...

mehr...