Giftige Symbiose

Mikrobe des Jahres mitverantwortlich für Pflanzengifte

Eine Arbeitsgruppe der Christian-Albrechts-Universität zu Kiel (CAU) um den Professor Dietrich Ober hat herausgefunden, dass Symbiosen von Pflanzen und Bakterien nicht nur, wie bisher vermutet, für die Bindung von Nährstoffen, sondern auch für die Produktion von Pflanzengiften verantwortlich sein können.

Die zur Gattung der Schmetterlingsblütler gehörende Crotalaria kommt hauptsächlich im tropischen und subtropischen Bereich vor. (Foto: Dietrich Ober)

„Viele Pflanzen benötigen zum Wachstum stickstoffhaltige Böden, die jedoch nicht in allen Regionen gegeben sind. Daher bilden einige Arten eine Symbiose mit bodenlebenden Bakterien, die es ihnen erlaubt, Stickstoff aus der Luft zu binden“, erklärt Prof. Dietrich Ober vom Botanischen Institut der CAU. Im Gegenzug erhalten die Bakterien Nährstoffe der Pflanze. Diese Symbiose ermöglicht Pflanzen, wie zum Beispiel Erbse oder Klee, auch auf stickstoffarmen Böden zu wachsen – und sie ersetzt bei Nutzpflanzen den Kunstdünger. Der Stickstoff wird in sogenannten „Wurzelknöllchen“ gebunden, einer organähnlichen, von Bakterien und Pflanze gemeinsam gebildeten, Symbiosestruktur an der Wurzel.

„Unsere Arbeitsgruppe erforscht die Evolution von Pyrrolizidin-Alkaloiden. Das sind Gifte, die einige Pflanzen zum Schutz vor Fraßfeinden produzieren“, sagt Ober. Ein Beispiel hierfür sei das in Deutschland berüchtigte Jakobs-Greiskraut, welches immer wieder in die Presse gelange, weil es zu Lebensmittelverunreinigungen bei Tees und Salaten führt. Das Forschungsinteresse der Arbeitsgruppe liegt allerdings in anderen Regionen: „Besonders interessiert uns die im subtropischen und tropischen Raum vorkommende Pflanzengattung Crotalaria, die vor allem in Afrika heimisch ist“, sagt Obers Mitarbeiterin Dr. Elisabeth Kaltenegger. Und: „Diese Gattung, die über 600 verschiedene Arten umfasst, gehört zu eben jenen giftigen Pflanzen, die Stickstoff durch Symbiosen mit Bakterien gewinnen.“

Anzeige
Die Rhizobien (Bakterien) lagern sich in den gut erkennbaren „Wurzelknöllchen“ an. (Foto: Dietrich Ober)

Im Gewächshaus fiel den Kieler Forschenden allerdings auf, dass die von ihnen selbst aufgezogenen Crotalaria keine Pyrrolizidin-Alkaloide enthielten. In mehreren Versuchen, beispielsweise durch die Zugabe von künstlichem Stickstoff wurde klar, dass der Pflanze die richtigen Bakterien für die Produktion der Gifte fehlten. Im weiteren Verlauf der Untersuchung „infizierten“ die Forscherinnen und Forscher die Pflanzen mit Rhizobien, die auch im Verbreitungsgebiet der Crotalaria vorkommen. Ober: „Der Vergleich von infizierten und nicht infizierten Exemplaren zeigte, dass nur die infizierten Pflanzen die Abwehrstoffe produzierten.“ Am Ende der Untersuchungen steht die Erkenntnis, dass die Pflanze das Gift zwar selbst produziert, dies jedoch nur in den von Bakterien bevölkerten Wurzelknöllchen tut.

Ober: „Gerade erst im vergangenen Monat wurden die Rhizobien wegen ihrer wachstumsfördernden Eigenschaften von der Vereinigung für Allgemeine und Angewandte Mikrobiologie zur Mikrobe des Jahres 2015 gekürt. Nun stellt sich heraus, dass der Einfluss des Bakteriums auf die Überlebensfähigkeit der Pflanze sogar noch viel größer ist, als bisher vermutet wurde.“

Originalpublikation:
New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation. Simon Irmer, Nora Podzun, Dorothee Langel, Franziska Heidemann, Elisabeth Kaltenegger, Brigitte Schemmerling, Christoph-Martin Geilfus, Christian Zörb, and Dietrich Ober. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.1423457112.

Dietrich Ober (Foto: pur.pur)

Kontakt:
Dr. Elisabeth Kaltenegger
Biochemische Ökologie und Molekulare Evolution
E-Mail: ekaltenegger@bot.uni-kiel.de

Professor Dr. Dietrich Ober
Biochemische Ökologie und Molekulare Evolution
E-Mail: dober@bot.uni-kiel.de
(Bis Ende März nur unregelmäßig per E-Mail erreichbar)

Anzeige

Das könnte Sie auch interessieren

Anzeige

Stickstoff-Fixierung

Spontane Knöllchen im Wurzelwerk

Für die Symbiose mit Stickstoff-fixierenden Bakterien programmieren Pflanzen ihre Wurzelzellen um – bei entsprechender Aktivierung sogar ohne Bakterienkontakt. Diese Eigenschaft könnte helfen, Kulturpflanzen von Dünger unabhängiger zu machen.

mehr...

Nanomaterialien

Aerographit faltbar wie ein Akkordeon

Seine komplexe Tetrapoden-Struktur verschafft dem 3D-Material Aerographit einzigartige Eigenschaften wie hohe Elastizität und elektrische Leitfähigkeit. Materialwissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU) konnten jetzt die nur...

mehr...
Anzeige

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite