Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Zell- und Mikrobiologie>

Nervensignale - Zellen verändern Vesikel für Botenstoffe

Zellen verändern Vesikel für BotenstoffeMolekulare „Gangschaltung“ für Nervensignale

Nervenzellen kommunizieren über Botenstoffe, die in kleinen Bläschen (Vesikeln) portionsweise verpackt sind. Sie schütten dazu den Inhalt dieser Vesikel in den synaptischen Spalt aus, der sie vom Nachbarn trennt. Jetzt haben Forscher der Goethe Universität beim Fadenwurm entdeckt, dass die Vesikel auch unterschiedlich gefüllt sein können. Gesteuert wird die Füllmenge über den Signalstoff cAMP.

sep
sep
sep
sep
Dünnschnitt durch die Synapse eines Motorneurons des Fadenwurms Caenorhabditis elegans. Die synaptischen Vesikel (grün, rot) sind von der neuronalen Hüllmembran (orange) umgeben. Rote Vesikel sind fusionsfähig. Die blau markierten Vesikel enthalten Neuropeptide, mit denen die Zelle die Füllung der roten und grünen Vesikel kontrolliert. (Copyright: Szi-chieh Yu und Wagner Steuer Costa, Goethe Universität)

Wird ein Neuron elektrisch angeregt, verschmelzen die Vesikel mit der Zellmembran. So gelangen die Botenstoffe aus dem Inneren des Neurons in den synaptischen Spalt. Je nach Stärke des Signals kann die Nervenzelle mehr oder weniger Vesikel pro Zeit ausschütten. Das ist mit einem molekularen Gaspedal des Neurons vergleichbar.

„Was wir jetzt entdeckt haben, entspricht dagegen einer Gangschaltung: So wie man bei gleichem Gas in einem höheren Gang eine höhere Geschwindigkeit erreichen kann, löst die Nervenzelle eine stärkere neuronale Aktivität aus, indem sie die Vesikel bei gleichbleibender Anzahl mit mehr Botenstoffen füllt“, erklärt Prof. Alexander Gottschalk vom Buchmann Institut für molekulare Lebenswissenschaften der Goethe Universität.

Anzeige

Wie die Forschergruppe in der aktuellen Ausgabe der Fachzeitschrift „Current Biology“ berichtet, führt der intrazelluläre Signalstoff cyclo-AMP (cAMP) innerhalb der Nervenzellen zur Aktivierung der Neurotransmission. Sie fanden dies heraus, indem sie den Signalstoff durch optogenetische Methoden in den Motorneuronen des Fadenwurms Caenorhabditis elegans vermehrt erzeugten. Dazu schleusten sie ein lichtaktiviertes Enzym, das cAMP bilden kann, spezifisch in die für Bewegung zuständigen Motorneurone des Wurms ein. Wurden die Tiere mit Licht einer bestimmten Frequenz bestrahlt, entstand mehr cAMP und die Fadenwürmer bewegten sich schneller.

Durch Elektrophysiologie konnten die Forscher nachweisen, dass cAMP die Verschmelzung von synaptischen Vesikeln mit der Membran der Nervenzelle anregt. Gleichzeitig nahm aber auch die Füllung der synaptischen Vesikel mit dem Transmitter Acetylcholin zu. Dies war mit einer elektronenmikroskopisch messbaren Vergrößerung der Vesikel verbunden. Die akute „Extrafüllung“ der Vesikel innerhalb weniger Sekunden wird durch weitere Botenstoffe, sogenannte Neuropeptide ausgelöst. Die optogenetisch stimulierten Neuronen schütten sie aus, um einen Gang höher zu schalten.

Die Forscher vermuten, dass dieser neue Mechanismus zur Kontrolle von Neurotransmission über Neuropeptide nicht nur im Bewegungsnervensystem von Fadenwürmern vorkommt, sondern auch bei Wirbeltieren oder sogar beim Menschen. Denn Neuropeptide werden auch in den Motorneuronen höherer Tiere gefunden - ihre Funktion ist bislang jedoch nur ungenügend bis gar nicht verstanden. Die Arbeitsgruppe von Alexander Gottschalk will nun untersuchen, ob der Mechanismus auch in Wirbeltieren wie Zebrafischen zum Tragen kommt.

Publikation:

Wagner Steuer Costa, Szi-chieh Yu, Jana F. Liewald, Alexander Gottschalk: Fast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading, in: Current Biology, 2. Februar 2017, online; http://dx.doi.org/10.1016/j.cub.2016.12.055).

Informationen:

Prof. Alexander Gottschalk, Molekulare Zellbiologie und neuronale Biochemie, Buchmann Institut für Molekulare Lebenswissenschaften (BMLS), Campus Riedberg, Campus Riedberg, E-Mail: a.gottschalk@em.uni-frankfurt.de.

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Koniozellen

NeurobiologieOptogenetik enthüllt Schaltkreise im Gehirn

Wie die einzelnen Schaltkreise in den stark verzweigten Netzwerken des Gehirns funktionieren, liegt bisher noch weitgehend im Dunkeln. Sie sichtbar zu machen ist kompliziert und erfordert sehr feinfühlige Messmethoden.

…mehr
Optogenetik

Neues optogenetisches WerkzeugG-Protein-gekoppelte Signalwege gezielt an- und abschalten

Bochumer Forscher haben sich lichtsensitive Proteine aus Nervenzellen des Auges - sogenannte Melanopsine - zunutze gemacht, um damit gezielt und mit hoher zeitlicher Präzision Signalwege in den Zellen des Gehirns anzuschalten.

…mehr
Botenstoffe mit optischem Schalter: Lichtgesteuerte Mittler

Botenstoffe mit optischem SchalterLichtgesteuerte Mittler

LMU- und EMBL-Forscher haben lebenswichtige zelluläre Botenstoffe mit einem optischen Schalter ausgestattet. Das ermöglicht ihnen detaillierte Einblicke in die komplexen Kommunikationsnetzwerke des Stoffwechsels.

…mehr
Rückenmark eines Mausembryos

NeurologieMotoneuronen zeigen Blutgefäßen den Weg

Einen entscheidenden Regulator für die Bildung von Blutgefäßen im sich ausbildenden Rückenmark während der Embryonalphase haben Heidelberger Neurowissenschaftler identifiziert. Sie konnten zeigen, dass Nervenzellen diesen Vorgang kontrollieren.

…mehr
Prof. Dr. Dr. Florian Mormann

Spezialisten-Zellen helfen GedächtnisErregung einzelner Neurone bei Epilepsie-Patienten gemessen

Bestimmte Nervenzellen feuern immer dann, wenn sie mit dem Bild oder dem Namen einer ganz bestimmten Person oder eines konkreten Objektes konfrontiert werden. Solche hoch spezialisierten Konzeptneurone erfüllen im eine wichtige Funktion für das Arbeitsgedächtnis.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung