Das Schalter-Molekül

Ein Molekül wird zum Transistor

Ein neuartiger Schalter auf Nanometer-Skala wurde von einem internationalen Forschungsteam vorgestellt. Mit einem einzigen Elektron kann man den Zustand des Schalters gezielt verändern.

Ein einzelnes organisches Molekül - mit einem Molybdän-Atom im Zentrum zwischen zwei Gold Elektroden - dient als Schalter. (Bild: TU Wien)

Ohne Transistoren läuft in der Elektronik gar nichts. Sie sind die fundamentalen Bauteile, auf denen die logischen Schaltungen in unseren Computerchips beruhen. Normalerweise bestehen sie aus Siliciumkristallen, dotiert mit anderen Atomsorten. Einem österreichisch-schweizerischen Forschungsteam (TU Wien, Universität Wien, Universität Zürich, IBM Zürich) gelang es nun, einen Transistor zu entwickeln, der auf grundlegend andere Weise funktioniert und nur aus einem einzigen Molekül besteht. Statt drei Elektroden, wie bei einem gewöhnlichen Transistor, benötigt dieses Schalter-Molekül bloß zwei Elektroden. Der neue Nano-Schalter wurde nun im Fachjournal „Nature Nanotechnology“ präsentiert.

Null oder eins

„Das Entscheidende an einem Transistor ist, dass er zwei verschiedene Zustände annehmen kann“, erklärt Robert Stadler vom Institut für Theoretische Physik der TU Wien (bei Projektbeginn war er noch am Department für physikalische Chemie der Universität Wien tätig). Je nachdem, in welchem Zustand sich der Transistor befindet, lässt er Strom fließen oder nicht. Ein gewöhnlicher Transistor aus Siliciumkristallen hat daher drei Kontakte: Von einem kommt der Strom, in den zweiten kann er abfließen – und ob das tatsächlich geschieht, hängt von der Spannung ab, die am dritten Kontakt, dem sogenannten Gate-Kontakt, angelegt wird.

Anzeige

Um immer mehr Transistoren auf immer geringerer Fläche unterzubringen, wurden die Transistoren in den letzten Jahrzehnten immer kleiner. Das hat die Leistungsfähigkeit der Elektronik drastisch verbessert, bringt aber auch immer größere technische Probleme mit sich: Mit gewöhnlicher Siliciumtechnologie stößt man dabei an physikalische Grenzen. „Bei extrem kleinen Kristallen hat man keine ausreichende Kontrolle mehr über die elektronischen Eigenschaften, vor allem wenn nur noch wenige Dotieratome vorhanden sind und die Trennschicht zum Gate immer undichter wird“, erklärt Stadler. „Wenn man auf der Nano-Skala allerdings von Kristallen auf organische Moleküle umsteigt, dann hat man neuartige Möglichkeiten, die Transporteigenschaften zu verändern.“

Ein Molekül wird zum Transistor

An der Universität Zürich synthetisierten Chemiker daher organometallische Molekülstrukturen, die mit einzelnen Metallatomen aus Eisen, Ruthenium oder Molybdän ausgestattet wurden. Nur etwa zweieinhalb Nanometer lang sind diese Designermoleküle, die am IBM Forschunglabor in Rüschlikon dann vorsichtig mit zwei Goldkontakten kontaktiert werden, bevor man eine elektrische Spannung an sie anlegen kann.

Bei einer der getesteten Molekülsorten, in deren Mitte ein Molybdän-Atom platziert ist, stellte man ganz bemerkenswerte Eigenschaften fest: Wie ein Siliciumtransistor lässt sich dieses Molekül zwischen zwei verschiedenen Zuständen hin und her schalten, die sich hinsichtlich ihrer Leitfähigkeit um drei Größenordnungen unterscheiden. Um den zugrundeliegenden Prozess zu verstehen, bedurfte es aufwändiger Computersimulationen am Vienna Scientific Cluster (VSC), die von Robert Stadler und seinem Dissertanten Georg Kastlunger in Wien durchgeführt wurden. Dadurch konnte der Mechanismus auf quantenphysikalischer Ebene entschlüsselt werden.

. Bei einer höheren Spannung allerdings kann das Elektron von seinem speziellen Platz beim Molybdän-Atom entfernt werden. Dadurch schaltet das System in einen neuen Zustand mit rund tausendmal besserer Leitfähigkeit, der Stromfluss steigt sprungartig an. Sowohl Umschalt- als auch Ausleseprozess lassen sich somit über die beiden Gold-Kontakte, zwischen denen das Molekül fixiert ist, realisieren. Eine dritte Elektrode, wie sie ein gewöhnlicher Transistor braucht, ist nicht mehr notwendig was die Verdrahtung massiv vereinfacht.

Technik für die Chips von übermorgen

Noch ist die verwendete Technologie allerdings zu aufwändig, um sie in Massenproduktion für kommerzielle Computerchips einzusetzen. Die Experimente fanden deshalb bei tiefen Temperaturen und im Ultrahochvakuum statt. Allerdings arbeitet man bei IBM bereits an Konzepten um mehrere solche Moleküle in Nanoporen auf einem Siliciumchip aufzubringen, so dass diese unter gewöhnlichen Umgebungsbedingungen, bei Raumtemperatur, funktionieren. „Das wäre einfacher – und auch für solche Systeme wären unsere theoretischen Methoden zweifellos geeignet“, ist Stadler zuversichtlich. „Vielleicht sind organische Moleküle mit eingebauten Metallatomen der Weg zu ultrakleinen Schaltern für neue Speicher – das Potenzial für spannende Anwendungen ist jedenfalls da, vor allem weil durch Wegfall der dritten Elektrode unerreichte Integrationsdichten möglich werden.“

Die Gruppe von Robert Stadler wird zur Gänze über Fellowships des österreichischen Wissenschaftsfonds FWF finanziert. Georg Kastlunger erhielt ein einjähriges Stipendium, welches zu gleichen Teilen von GÖCH, ÖAW und Springer Verlag gestiftet wurde. Die Schweizer Projektpartner wurden vom Schweizerischen Nationalfonds gefördert.

Rückfragehinweis:
Dr. Robert Stadler
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10
E-Mail: robert.stadler@tuwien.ac.at

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Integriertes Datenmanagement

Ihre im Labor erzeugten Daten können Sie sicher und strukturiert in einem System sammeln. NEC und labfolder bieten ein Mittel für die effiziente Verwaltung großer wissenschaftlicher Datensätze an.

mehr...
Anzeige
Anzeige
Anzeige

Highlight der Woche

Integriertes Datenmanagement
Die Herausforderung bei der Digitalisierung des Laboralltags besteht im Wechsel von Papierlaborbüchern und Computerdateien zu einer Datenmanagementsoftware, die große Datensätze strukturiert innerhalb eines einzigen Systems sammelt.

Zum Highlight der Woche...