An der Schnittstelle zwischen Biologie und Algorithmen

Virtueller Patient: Computermodelle für die personalisierte Medizin

Wissenschaftler der TU Darmstadt entwickeln aus vielen Labordaten von Krebszellen und Daten aus Patientenbefunden Computermodelle. So entsteht ein virtueller Patient, der personalisiert behandelt werden kann.

Im Labor: Professor Heinz Koeppl (li.) und sein wissenschaftlicher Mitarbeiter Jascha Diemer. © TU Darmstadt / Katrin Binner

Krebs ist nicht gleich Krebs. Jede Leukämie hat ihre Besonderheiten, jeder Tumorpatient eine einzigartige Erkrankung. Der Grund: Krebszellen sind entartete Körperzellen, deren Wachstum durch diverse Genveränderungen außer Kontrolle geraten ist. Diese Mutationen variieren selbst unter Patienten, die an der gleichen Krebsart leiden. Sogar Zellen innerhalb eines Tumors können sich genetisch unterscheiden.

Die Genveränderungen beeinflussen aber nicht nur das Wachstum der kranken Zellen, sondern auch deren Ansprache auf eine Behandlung. „Bei einer herkömmlichen Therapie dreht man daher oft an Stellschrauben, die für einen spezifischen Patienten keinen Effekt haben“, sagt Heinz Koeppl, Professor am Fachbereich Elektrotechnik und Informationstechnik und Zweitmitglied im Fachbereich Biologie.

Nur jede vierte Krebstherapie ist heute erfolgreich

Bislang verläuft nur jede vierte Krebstherapie erfolgreich – unter den Nebenwirkungen leiden die Patienten trotzdem. Die Vision von Koeppl und seinen Mitarbeitern: Zukünftig soll sich vorab abschätzen lassen, ob eine bestimmte Therapie einer erkrankten Person überhaupt helfen kann. Dafür entwickeln die Wissenschaftler Computermodelle, quasi virtuelle Patienten, die sie aus Gen-­ und Protein­-Daten der Krebszellen, aus Ergebnissen von Zellversuchen im Labor, aus histologischen Befunden, anderen klinischen Untersuchungen sowie vielen weiteren Informationen konstruieren.

Anzeige

Die Darmstädter Forschungsarbeiten sind eingebunden in zwei EU-Projekte: Das internationale Verbundvorhaben PrECISE, das nunmehr endet, hat sich auf Prostata-Krebs konzentriert. Im Februar 2019 startet das iPC­Projekt, das sich mit häufigen Krebsleiden von Kindern beschäftigt.

Für einige Krebstypen gibt es bereits grobe Netzwerkmodelle und Datenbanken, die Zellprozesse, beispielsweise Signalkaskaden und katalytische Aktivitäten von Proteinen, beschreiben. Dieses Netzwerkskelett verfeinern die Forscher, indem sie aktuelle krankheits­ und patientenspezifische Informationen integrieren.

Die Kunst liege darin, Algorithmen zu finden, die das vorhandene Wissen korrekt an die neuen molekularen Daten anpassen, erklärt Koeppl. Es sei extrem wichtig, das Detailwissen in den Köpfen von Biologen und Biochemikern in die Modelle miteinzubeziehen: „Rein datengetriebene Verfahren der Künstlichen Intelligenz sind hier nicht zielführend.“

Netzwerk der molekularen Wechselwirkungen

Der virtuelle Patient bildet das Netzwerk der molekularen Wechselwirkungen in den Krebszellen ab. Wollen die Forscher ein Medikament testen, das ein bestimmtes Protein hemmt, müssen sie in ihrem Computermodell nur die Aktivität dieses Proteins verringern oder ausschalten. Sie sehen dann die Auswirkungen auf das gesamte Netzwerk und somit auf die Krebszellen. Wird der gewünschte Signalpfad deaktiviert? Vermehren sich die Zellen jetzt langsamer? Sterben sie gar ab? Oder ist der Effekt vernachlässigbar?

„Wenn man verschiedene Wirkstoffe am Netzwerkmodell durchspielt, kann man einem Patienten die beste verfügbare Therapie vorschlagen. Das ist die Idee der personalisierten Medizin“, sagt Koeppl. Immuntherapien und andere neue Behandlungsmethoden lassen sich ebenfalls mit solchen Modellen testen. Im PrECISE­Projekt wurde die Wirkung bestimmter Anti-Krebs-Mittel bereits am Computer abgeschätzt. „Die aktuellen Ergebnisse stimmen zumindest gut mit Daten aus Krebszelllinien überein“, sagt Koeppl. Das lässt hoffen, auch wenn bis zur klinischen Anwendung noch Jahre vergehen werden.

Quelle: TU Darmstadt

Publikation zum Thema: 
D. Linzner und H. Koeppl, Cluster Variational Approximations for Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data, Advances in Neural Information Processing Systems (NIPS), 2018

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

INTEGRA erweitert die Produktfamilie der manuellen EVOLVE-Pipetten

INTEGRA Biosciences erweitert die Produktfamilie der manuellen EVOLVE-Pipetten mit der Einführung einer neuen 16-Kanal-Pipette. Das neue Modell ist ergonomisch gestaltet, um die Produktivität zu steigern und die Handhabung durch den Benutzer zu verbessern, und ist in den Größen 10, 50 und 100 µl erhältlich.

mehr...
Anzeige