Frequenzstabile Laserlichtquelle für Präzisionsmessungen

Lasersystem besteht Weltraumtest

Ein von Mainzer Wissenschaftlern mitentwickeltes Lasersystem ist am 23. Januar 2016 erfolgreich an Bord einer Höhenforschungsrakete der Mission TEXUS 53 getestet worden. TEXUS steht für „Technologische Experimente unter Schwerelosigkeit“ und ist ein Wissenschaftsprogramm, das vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) finanziert und organisiert wird.

KALEXUS-Apparatur: (Foto/©: KALEXUS-Team)

Die aus Nordschweden startenden Raketen erreichen eine maximale Höhe von 250 km und ermöglichen eine 6 min andauernde Schwerelosigkeit. In einem solchen Flug können bis zu fünf unabhängige Experimente aus verschiedensten Fachrichtungen durchgeführt werden. Eines davon ist KALEXUS – Kalium-Laserexperimente unter Schwerelosigkeit, ein von der Humboldt-Universität zu Berlin geleitetes Experiment, in dessen Rahmen erstmals ein System zur aktiven Frequenzstabilisierung von Laserlicht auf einen atomaren Übergang von Kalium erprobt wird.

Eine solche frequenzstabile Lichtquelle ist das Herzstück einer Vielzahl von Experimenten mit atomaren Sensoren. Diese können zum Beispiel in der Grundlagenforschung für hochpräzise Messungen von fundamentalen Konstanten oder Gesetzen, aber auch in der Navigation oder Geodäsie zur Anwendung kommen. Gerade für den Einsatz im Weltraum müssen diese Lichtquellen, die meist durch Laser realisiert werden, sehr strenge Anforderungen erfüllen.

Anzeige

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) um Univ.-Prof. Dr. Patrick Windpassinger haben für dieses Projekt ein Modul entwickelt und konstruiert, mit dem die Frequenz eines Lasers relativ zu einer absoluten Frequenzreferenz aktiv stabilisiert werden kann. Die für den Einsatz im Weltraum nötige Stabilität wird dabei durch die Verwendung der Glaskeramik Zerodur® (Schott, Mainz) erreicht. In diesem Modul wird ein Laserstrahl durch eine mit Kalium gefüllte Gaszelle geleitet und die Absorption durch die Kaliumatome gemessen. Dadurch können Rückschlüsse auf die Frequenz des Lasers gezogen werden, was dann die aktive Stabilisierung der Laserfrequenz ermöglicht.

Als Lichtquelle wird ein neuartiger Extended-Cavity-Diodenlaser vom Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin, verwendet. Die notwendige Steuerelektronik wurde von der Leibniz Universität Hannover entwickelt.

Die in diesem Experiment verwendete Technologie ist ein wesentlicher Bestandteil der Lasersysteme für eine Vielzahl von weiteren Projekten zu Präzisionsmessungen im Weltraum, wie etwa den MAIUS-Missionen zur Untersuchung des Einstein’schen Äquivalenzprinzips.

Neben KALEXUS wurde auch das bereits im April 2015 erfolgreich durchgeführte FOKUS-Experiment (Faseroptischer Frequenzkamm unter Schwerelosigkeit) erneut geflogen. Dazu wurde von Mainzer Wissenschaftlern ein verbessertes Spektroskopiemodul für Rubidium entwickelt, das verschiedene Spektroskopiemethoden miteinander verbindet. Durch Kombination der beiden Experimente gelang der erstmalige Vergleich zweier optischer Uhren im Weltraum.

Weitere Informationen:
Dr. André Wenzlawski
Arbeitsgruppe Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
55099 Mainz
E-Mail: awenzlaw@uni-mainz.de
https://www.qoqi.physik.uni-mainz.de/

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige

Quantenkaskadenlaser

Rekord bei Terahertzpuls-Erzeugung

Einer Gruppe von Forschern der TU Wien und der ETH Zürich gelang es, ultrakurze Terahertzlichtpulse zu erzeugen. Diese nur wenige Pikosekunden langen Pulse sind hervorragend für spektroskopische Anwendungen geeignet und ermöglichen ultragenaue...

mehr...
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite