Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Zell- und Mikrobiologie>

Zellkern-Skelett - molekularer Aufbau erstmals aufgeklärt

Zellkern-SkelettMolekularer Aufbau erstmals aufgeklärt

Mittels 3D-Elektronenmikroskopie konnten Strukturbiologen der Universität Zürich erstmals die Architektur der Lamina des Zellkerns in molekularer Auflösung darstellen. Dieses Gerüst stabilisiert den Zellkern höherer Lebewesen und ist bei der Organisation, Aktivierung und Duplizierung des Erbmaterials beteiligt.

sep
sep
sep
sep
Lamin-Filamente

Schwere Krankheiten wie Muskelschwund oder vorzeitige Vergreisung, die durch Mutationen in den Laminen, den Hauptbestandteilen der Lamina, verursacht werden, lassen sich nun besser erforschen.

Im Gegensatz zu Bakterien befindet sich das genetische Material von höheren Lebewesen im Zellkern bzw. Nukleus. Dessen äußere Hülle besteht aus der Zellkernmembran, in der zahlreiche Poren eingebettet sind. Durch diese Transportkanäle werden Moleküle in den Zellkern hinein bzw. von dort hinaus befördert.

Unterhalb der Membran liegt die nukleäre Lamina, ein fadenartiges Geflecht von einigen Millionstel Millimetern Dicke. Dieses stabilisiert den Zellkern und schützt die darunterliegende DNA vor äußeren Einflüssen. Zudem spielt die Lamina eine wichtige Rolle bei essenziellen Prozessen im Zellkern – etwa die Organisation der Chromosomen, die Aktivität von Genen sowie die Verdoppelung des Erbmaterials vor der Zellteilung.

Anzeige

Detaillierte 3D-Darstellung des Zellkern-Gerüsts in natürlicher Form
Nun konnten Forschende des Biochemischen Instituts der UZH unter der Leitung des Zellbiologieprofessors Ohad Medalia erstmals die molekulare Architektur der Zellkern-Lamina von Säugetierzellen im Detail aufklären. Die Wissenschaftler untersuchten Bindegewebszellen von Mäusen mittels Kryo-Elektronentomografie.

„Dieses Verfahren kombiniert Elektronenmikroskopie und Computertomografie und erlaubt es, Zellstrukturen in einem quasi-natürlichen Zustand in Molekülauflösung dreidimensional sichtbar zu machen“, erläutert Yagmur Turgay, Erstautor der Studie. Die Zellen werden – ohne Vorbehandlung mit schädlichen Chemikalien – in flüssigem Ethan bei -190 °C schockgefroren, wodurch die Zellstrukturen in ihrem ursprünglichen Zustand erhalten bleiben.

„Das Lamin-Geflecht entspricht einer rund 14 Nanometer dicken Schicht, die sich direkt unterhalb der Porenkomplexe der Zellkernmembran befindet und die aus mehr oder weniger dicht gepackten Regionen besteht“, beschreibt Yagmur Turgay die Architektur des Zellkern-Skeletts. Aufgebaut ist das Gerüst aus dünnen, fadenförmigen Gebilden unterschiedlicher Länge – den Lamin-Filamenten. Mit einer Dicke von nur 3,5 nm sind die Filamente der Lamina viel dünner und filigraner als die Strukturen, die bei höheren Organismen das Zellskelett außerhalb des Zellkerns bilden.

Neuer Ansatz für die Erforschung von Progerie und Muskelschwund
Die Grundbausteine der Filamente sind zwei Eiweiße – die Lamin-Proteine des Typs A und B – die sich aneinanderlagern. Diese bestehen aus einem länglichen Stamm und einer globulären Domäne; ähnlich einer Stecknadel mit Stecknadelkopf. Schon einzelne Mutationen im Lamin-Gen führen zu ganz unterschiedlichen, schweren Krankheiten wie vorzeitiges Altern (Progerie), Muskelschwund (Muskeldystrophien), Fehlverteilung des Fettgewebes (Lipodystrophien) und Erkrankungen des Nervensystems (Neuropathien).

„Die Kryo-Elektronentomografie erlaubt es uns, zukünftig die strukturellen Unterschiede der nukleären Lamina von gesunden Menschen und von Patienten mit Mutationen im Lamin-Gen detailliert zu untersuchen“, sagt Ohad Medalia. Diese Methode, so der Strukturbiologe, erlaube die Entwicklung neuer Krankheitsmodelle auf molekularer Ebene, die den Weg hin zu neuen therapeutischen Maßnahmen eröffne.

Literatur:
Yagmur Turgay, Matthias Eibauer, Anne E. Goldman, Takeshi Shimi, Maayan Khayat, Kfir Ben-Harush, Anna Dubrovsky-Gaupp, K. Tanuj Sapra, Robert D. Goldman, Ohad Medalia. The molecular architecture of lamins in somatic cells. Nature. March 1, 2017. DOI:10.1038/nature21382.

Kontakt:
Prof. Dr. Ohad Medalia
Biochemisches Institut
Universität Zürich
E-Mail: omedalia@bioc.uzh.ch

Dr. Yagmur Turgay
Biochemisches Institut
Universität Zürich
E-Mail: y.turgay@bioc.uzh.ch

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Durch die Kombination technischer Entwicklungen in der Kryo-Elektronentomografie können verschiedene Bestandteile der Zelle in ihrer natürlichen Umgebung sichtbar gemacht werden. Im Hintergrund sind Bestandteile des Zellkerns zu sehen: DNA (orange) und die Kernlamina (pink). Im Vordergrund Bestandteile des Zellplasmas Mikrotubuli (grün), Aktin (rot), Intermediärfilamente (beige), Ribosomen (gelb, hellblau) und Kernporen (blau). (© MPI für Biochemie)

Kryo-ElektronentomografieUngetrübter Blick in die Zelle

Durch die Kombination neuester Entwicklungen im Bereich der Kryo-Elektronentomografie haben Wissenschaftler vom Max-Planck-Institut für Biochemie in Martinsried bisher verborgene Strukturen rund um den Zellkern von HeLa-Zellen in dreidimensionalen Bildern sichtbar gemacht.

…mehr
Einblicke in HIV in bislang unerreichter Auflösung: Die grün und rot dargestellten CA-Eiweiß-Strukturen formen die konische Schutzhülle des Virusgenoms. (Foto: Simone Mattei / EMBL)

HI-VirusErbgut-Schutzhülle erstmals im Innern des Virus dargestellt

Wissenschaftler der Molecular Medicine Partnership Unit, einer Kollaboration zwischen EMBL und Universitätsklinikum Heidelberg, nutzen höchstauflösende bildgebende Verfahren: Aufnahmen von realen intakten Viren zeigen, wie deren Eiweißhülle Capsid aufgebaut ist.

…mehr
Mikroskopaufnahme von Staphylococcus aureus

BiohysikBeharrliche Winzlinge: Wie krankmachende Bakterien mit Proteinen an den Zielmolekülen ihres Wirtes "kleben"

LMU-Forscher haben den physikalischen Mechanismus entschlüsselt, mit dem sich ein weit verbreiteter Krankheitserreger an sein Zielmolekül im menschlichen Körper bindet. Damit legt die Studie Grundlagen z.B. für die Entwicklung neuartiger Therapien bei Infektionen mit Staphylokokken. 

…mehr
Mann und Frau an der Kinderwiege

Medikamentöse GeburtenkontrolleErste hormonfreie Verhütungspille für den Mann kommt aus Australien

Dank der Forschungsarbeit von Wissenschaftlern der Monash University in Melbourne könnte die hormonfreie Verhütungspille für den Mann schon bald Realität werden.

…mehr

Interleukin bei AllergienÜberfunktion von IL33 verursacht allergisches Asthma

Ein Forscherteam hat gezeigt, dass allergisches Asthma durch die Überfunktion eines Proteins – Interleukin 33 (IL-33) – ausgelöst wird. Gelänge es, diesen Mechanismus zu blockieren, würde dies neue Behandlungsmöglichkeiten eröffnen.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung