Labo Online - Analytic, Labortechnik, Life Sciences
Home> Analytik> Materialprüfung>

Proton genauestens analysiert

HERA-Experimente H1 und ZEUSDas detaillierteste Bild des Protons

15 Jahre lang wurde an Deutschlands größtem Teilchenbeschleuniger HERA gemessen, weitere acht Jahre wurden die Daten ausgewertet und analysiert. Jetzt haben die Teilchenphysiker der beiden großen HERA-Experimente H1 und ZEUS die weltweit präzisesten Resultate über die innere Struktur und das Verhalten des Protons veröffentlicht. Die Analyse zeichnet ein detailliertes Bild vom brodelnden Teilchensee im Inneren des Teilchens.

sep
sep
sep
sep
Teilchenbeschleuniger HERA

Die Teams beider Detektoren kombinierten für die Auswertung die Daten von mehr als zwei Milliarden Teilchenkollisionen, die sie an DESYs Beschleuniger HERA beobachtet hatten. Rund 300 Autoren von 70 Forschungsinstituten haben intensiv an dieser Analyse gearbeitet. „Diese Publikation beinhaltet die Kronjuwelen von HERA und wird auf lange Zeit das präziseste Bild des Protons sein wird“, so DESY-Forschungsdirektor Joachim Mnich. „Diese Ergebnisse sind nicht nur wichtig für das Verständnis der grundlegenden Eigenschaften der Materie, sie sind auch eine essentielle Basis für Experimente an Protonenbeschleunigern wie dem LHC am CERN in Genf.

Anzeige

In jedem einzelnen Atomkern unseres Universums befinden sich Protonen. Seit Jahrzehnten ist bekannt, dass sie sich aus drei Quarks zusammensetzen – zwei up- und ein down-Quark –, die durch die sogenannten Gluonen zusammengehalten werden, die Trägerteilchen der starken Kraft. Dieses Bild zählt zum Wissen, das an Schulen gelehrt wird. Das wahre Innenleben des Protons ist jedoch wesentlich komplexer: Das Proton gleicht einer brodelnden Teilchensuppe, in der Gluonen weitere Gluonen produzieren oder Quark-Antiquark-Paare bilden, die sogenannten Seequarks, die wiederum alle sehr schnell wieder miteinander wechselwirken.

Der Teilchenbeschleuniger HERA (Hadron-Elektron-Ring-Anlage) wurde gebaut, um tief in das Innere des Protons hineinzusehen und seine Struktur mit Hilfe von Elektronen als Sonden genauestens zu untersuchen. Von 1992 bis 2007 wurden dazu Protonen in einem 6,3 Kilometer langen, supraleitenden Beschleunigerring auf fast Lichtgeschwindigkeit beschleunigt, bevor sie mit in entgegengesetzter Richtung beschleunigten Elektronen – oder deren Antiteilchen, den Positronen – zusammenprallten. Elektronen und Positronen gehören zur Elementarteilchensorte der Leptonen. Die Leptonen drangen tief in das Proton ein und wurden jeweils an einem der Bausteine des Protons gestreut. Das geschieht entweder über die elektromagnetische oder über die sogenannte schwache Kraft, zwei der vier fundamentalen Kräfte der Natur. Die Reaktionen wurden in den beiden hausgroßen Vielzweck-Detektoren H1 und ZEUS gemessen.

Dabei analysierten die Wissenschaftler die Wahrscheinlichkeit für verschiedene Verhaltensweisen dieser Lepton-Proton-Streuprozesse an beiden Experimenten und verglichen ihre Ergebnisse mit der bestmöglichen Beschreibung der Struktur des Protons, der Theorie der Quantenchromodynamik (QCD). Ergebnis: Die HERA-Ergebnisse stimmen ideal mit der QCD-Theorie überein und zeigen dabei, dass die Struktur des Protons immer dynamischer wird, je höher die Energie ist, bei der sie erkundet wird.

Als weiteres Ergebnis können die HERA-Daten eindrucksvoll belegen, dass sich die elektromagnetische und die schwache Kraft bei extrem hohen Energien vereinigen, wie es vom Standardmodell der Teilchenphysik vorhergesagt wird. Diese Erkenntnis stützt die Vermutung der Physiker, dass diese beiden Kräfte zwei Seiten derselben Medaille sind, obwohl die elektromagnetische Kraft bei niedrigen Energien viel stärker ist als die schwache Kraft. Dieses Ergebnis weist vielleicht am Ende sogar den Weg zur Vereinheitlichung aller vier Grundkräfte der Natur.

In den HERA-Daten konnten die Physiker die beiden Kräfte anhand der Art der Trägerteilchen identifizieren, die die Kräfte vermitteln: Während die elektromagnetische Kraft durch das neutrale Photon vermittelt wird, hat die schwache Kraft sowohl ein neutrales als auch zwei geladene Trägerteilchen, die sogenannten Z- und W-Bosonen. Bei hohen Kollisionsenergien zeigen die H1- und ZEUS-Daten, dass sich beide Kräfte absolut gleich verhalten – ein deutlicher Hinweis auf die elektroschwache Vereinigung.

„Durch die Kombination der Messungen von beiden Detektoren erreichen wir die höchstmögliche Präzision unserer Ergebnisse“, sagt H1-Sprecher Stefan Schmitt (DESY). „Die kombinierten Daten profitieren nicht nur von der verbesserten Statistik, sondern auch von einem besseren Verständnis jeder einzelnen Messung und von der Interkalibration, die sich dadurch ergibt, dass beide Wissenschaftlergruppen unterschiedliche Detektoren und experimentelle Techniken für ihre Messungen nutzten.“ Allerdings ist die Kombination der Daten aus genau diesem Grund enorm aufwendig – sie wurden von unterschiedlichen Teilchendetektoren aufgezeichnet, mit verschiedenen Techniken analysiert und über einem Zeitraum von 15 Jahren gesammelt. „Jeder der Datenpunkte hat bis zu 20 Unsicherheitsquellen, und bei der Kombination der Daten kann jede der 20 Quellen mit den Unsicherheiten des nächsten Datenpunktes in Beziehung gebracht werden, und alle diese Beziehungen müssen verstanden werden“, sagt ZEUS-Sprecher Matthew Wing (University College London).

Bereits im Jahr 2009 veröffentlichten H1 und ZEUS eine gemeinsame Arbeit über die Struktur des Protons, das allerdings nur auf den Daten des HERA-Betriebs bis zum Jahr 2000 basiert. Mit 600 Zitierungen bis heute ist es eine der am häufigsten zitierten Publikationen auf diesem Gebiet. Die jetzt erschienene Veröffentlichung basiert auf der vierfachen Anzahl an Teilchenkollisionen und enthält auch Daten aus einem speziellen Betrieb von HERA bei unterschiedlichen Teilchenenergien.

Dennoch hinterlassen die Daten auch immer noch Rätsel bei der Überprüfung des Standardmodells der Teilchenphysik. „Besonders bei einem niedrigen Energieübertrag zwischen Elektron und Proton kann die als Bezugstheorie verwendete Quantenchromodynamik unsere Messungen nicht ausreichend beschreiben“, sagt Wing. „Das wird auf alle Fälle etwas sein, auf das Theoretiker und Phänomenologen in Zukunft ein Auge werfen sollten.“

Originalveröffentlichung:
Combination of Measurements of Inclusive Deep Inelastic e±p Scattering Cross Sections and QCD Analysis of HERA Data; H1 and ZEUS Collaboration. http://xxx.lanl.gov/abs/1506.06042

Wissenschaftliche Ansprechpartner:
Stefan Schmitt
Sprecher der H1-Kollaboration
Deutsches Elektronen-Synchrotron DESY
stefan.schmitt@desy.de

Matthew Wing
Sprecher der ZEUS-Kollaboration
University College London
m.wing@ucl.ac.uk

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Vakuumlösungen für Teilchenbeschleuniger: Turbopumpen von Pfeiffer Vacuum für das CERN

Vakuumlösungen für TeilchenbeschleunigerTurbopumpen von Pfeiffer Vacuum für das CERN

Pfeiffer Vacuum hat erneut einen Auftrag vom CERN über Turbopumpen und Turbopumpstände erhalten. Das CERN bei Genf und ist das weltgrößte Forschungszentrum für Teilchenphysik. Die Hauptaufgabe des CERN besteht in der Erforschung der Materie, aus der das Universum besteht.

 

…mehr
Schematische Darstellung eines aufgezeichneten Kollisionsereignisses mit zwei Lichtteilchen am ATLAS-Experiment vom 12. Dezember 2015. (Foto/©: ATLAS Collaboration)

Licht-an-Licht-StreuungPhotonen können miteinander kollidieren

Teilchenphysiker am Forschungszentrum CERN bei Genf haben eine 80 Jahre alte Annahme über die Streuung von Lichtteilchen an Lichtteilchen zum ersten Mal in Teilchenkollisionen experimentell beobachtet. So wurde bestätigt, dass die Lichtteilchen, genannt Photonen, wenn sie aufeinandertreffen, miteinander wechselwirken können.

…mehr

Nuklearer TaktgeberBasis für neuartige Kernuhr

LMU-Forscher messen erstmals die Lebensdauer eines exotischen Atomkern-Zustands: Eine wesentliche Voraussetzung, um eine Kernuhr entwickeln zu können, die Zeit noch genauer misst als die heutigen Atomuhren.

…mehr
BASE-Experiment

Beitrag zur Materie-Antimaterie-FrageMagnetische Kraft von Antiprotonen genauestens bestimmt

So offensichtlich es ist, dass Materie existiert, ebenso rätselhaft ist noch immer ihre Herkunft. Denn eigentlich hätte nach den Prinzipien der Teilchenphysik bei der Entstehung des Weltalls genauso viel Materie wie Antimaterie gebildet werden müssen.

…mehr
Aufgezeichneter Zerfall eines W-Bosons mit dem ATLAS-Detektor am LHC: Für die Bestimmung der W-Boson-Masse wurden mehr als 10 Millionen Ereignisse dieser Art vermessen und untersucht. (Abb./©: ATLAS Collaboration)

TeilchenphysikW-Boson-Messung bestätigt das Standardmodell

Es ist ein großer Erfolg und eine kleine Enttäuschung zugleich: Nach fünfjähriger Arbeit konnten Physiker am Forschungszentrum CERN am Dienstag dem internationalen Fachpublikum eine Hochpräzisionsmessung der Masse des W-Bosons vorstellen.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung