Effizienz der Wasser-Elektrolyse verdoppelt

Kupferschicht unter der Oberfläche steigert Aktivität von Platin-Elektroden

Die Wasser-Elektrolyse konnte sich als Verfahren für die Produktion von Wasserstoff bislang nicht durchsetzen. Zu viel Energie geht in dem Prozess verloren. Mit einem Trick hat ein Team aus Forschern der Technischen Universität München (TUM), der Ruhr-Universität Bochum und der Universität Leiden die Effizienz der Reaktion nun verdoppelt.

Eine Kupferschicht unter der Oberfläche verleiht dem Platin-Katalysator eine deutlich höhere Aktivität und eine längere Lebensdauer. (Bild: Federico Calle Vallejo / Univ. Leiden)

Noch müssen bei Stromüberschuss Windräder vom Netz genommen werden. Als Alternative wird immer wieder die Spaltung von Wasser in Wasserstoff und Sauerstoff genannt, die mit überschüssiger Energie betrieben werden könnte. Doch bisher wird Wasserstoff industriell vor allem aus Erdgas hergestellt. Obwohl bei diesem Prozess große Mengen des Treibhausgases Kohlendioxid freigesetzt werden, ist er immer noch billiger ist als die Wasser-Elektrolyse.

Die Elektroden für die Wasser-Elektrolyse enthalten üblicherweise Platin als Katalysator, um die Umsetzung von Wasser zu Wasserstoff und Sauerstoff zu beschleunigen. Damit die Reaktion möglichst effizient abläuft, dürfen Zwischenprodukte dabei weder zu stark noch zu schwach an der Katalysatoroberfläche haften.

Herkömmliche Elektroden binden Zwischenprodukte zu stark
Das Team um Prof. Dr. Aliaksandr Bandarenka vom Lehrstuhl für Physik der Energieumwandlung und -speicherung der TU München und Prof. Dr. Wolfgang Schuhmann vom Bochumer Zentrum für Elektrochemie berechnete nun, wie stark die Zwischenprodukte an den Elektroden haften sollten, um eine möglichst effiziente Reaktion zu erlauben. Die Analyse ergab, dass herkömmlichen Elektroden aus Platin, Rhodium und Palladium die Zwischenprodukte etwas zu stark binden.

Anzeige

Die Forscher modifizierten daher die Eigenschaften der Platin-Katalysatoroberfläche, indem sie eine Schicht aus Kupferatomen einfügten. Mit dieser Zusatzschicht erzeugte das System doppelt so viel Wasserstoff wie mit einer reinen Platinelektrode. Allerdings nur, wenn die Forscher die Kupferschicht direkt unter der obersten Lage der Platin-Atome einbrachten. Die Gruppe beobachtete zudem, dass die Elektroden mit der Kupferschicht langlebiger waren, zum Beispiel widerstandsfähiger gegen Korrosion.

Wasser-Elektrolyse könnte mit Überschussstrom betrieben werden
Nur vier Prozent des weltweit produzierten Wasserstoffs entstehen bislang durch die Elektrolyse von Wasser. Weil die verwendeten Elektroden nicht effizient genug sind, lohnt sich eine großflächige Anwendung nicht. „Bisher wird Wasserstoff überwiegend aus fossilen Brennstoffen gewonnen, wobei eine hohe Menge CO2 freigesetzt wird“, sagt Wolfgang Schuhmann. „Es wäre ein großer Schritt in Richtung klimaschonender Energieumwandlung, wenn wir Wasserstoff stattdessen mittels Elektrolyse gewinnen würden. Dafür könnten wir den Überschussstrom zum Beispiel aus der Windkraft nutzen.“

„Darüber hinaus ermöglicht uns die Forschung an dieser Reaktion zu testen, wie gut wir Katalysatoroberflächen designen können, indem wir unterschiedliche Metallatome präzise positionieren“, ergänzt Aliaksandr Bandarenka. „Dieses Wissen könnte auch vielen anderen katalytischen Prozessen zugutekommen.“

Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen der Exzellenzcluster RESOLV und Nanosystems Initiative Munich (NIM). Weitere Unterstützung kam von der Helmholtz-Energie-Allianz „Stationäre elektrochemische Speicher und Wandler“.

Publikation:
J. Tymoczko, F. Calle-Vallejo, W. Schuhmann, A. S. Bandarenka: Making the hydrogen evolution reaction in polymer electrolyte membrane electrolyzers even faster; Nature Communications, 10.03.2016 – DOI: 10.1038/NCOMMS10990.

Kontakt:
Prof. Dr. Aliaksandr S. Bandarenka
Technische Universität München
Physik der Energiewandlung und -speicherung
James-Franck-Str. 1, 85748 Garching, Germany
E-mail: bandarenka@ph.tum.de
Web: http://www.energy.ph.tum.de/

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Nanotechnologie

Neue Einblicke in chemische Reaktionen

80 % aller Produkte der chemischen Industrie werden mit Katalyseverfahren hergestellt. Auch in der Energieumwandlung und Abgasreinigung ist Katalyse unverzichtbar. Entsprechend wichtig ist, dass diese Verfahren möglichst schnell und effizient...

mehr...