Labo Online - Analytic, Labortechnik, Life Sciences
Home> Wirtschaft + Wissenschaft> Archiv>

Einflussmöglichkeiten auf chemische Reaktionen untersucht - Ein Elektron auf Tauchgang

Einflussmöglichkeiten auf chemische Reaktionen untersuchtEin Elektron auf Tauchgang

Forscher des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin haben bestimmt, wie stark Elektronen gebunden sind, wenn sie von Wasser aufgenommen werden – und zwar ganz zu Anfang, sobald die negativen Ladungsträger von einem Material wie etwa einem möglichen Reaktionspartner ins Wasser abgegeben werden. Erkenntnisse, wie Elektronen in Wasser gelöst werden, erweitern die Einflussmöglichkeiten auf chemische Reaktionen.

sep
sep
sep
sep
Lichtkatapult

Elektronen sind die eigentlichen Akteure in chemischen Reaktionen, weil sie dabei zwischen verschiedenen Atomen verschoben werden. Ob das passiert, hängt von ihrer Bindungsenergie an die unterschiedlichen Komponenten ab. Und bei Reaktionen in wässrigen Lösungen ist die Bindungsenergie eines Elektrons am Anfang des Prozesses, bei dem dieses gelöst wird, ein entscheidender Faktor. Ein Elektron, das losgelöst von einem Atom oder Molekül im Wasser „schwimmt“, verhält sich in etwa so wie ein Einsiedlerkrebs ohne Muschel: So wie der Krebs sich schnell eine neue Behausung sucht und dabei mit seinen Artgenossen nicht gerade zimperlich umgeht, will auch das Elektron möglichst schnell wieder bei einem Atom unterschlüpfen und drängt sich dabei in die chemischen Verbindungen, die es im Wasser gerade findet. Daher mischen solche nackten Elektronen bei zahlreichen chemischen Reaktionen mit, wenn Wasser vorhanden ist: in den chemischen Prozessen in biologischen Zellen etwa, oder bei der Entstehung des Ozonlochs und anderen Reaktionen in der Atmosphäre, die in winzigen Wassertröpfchen stattfinden.

Anzeige

Ehe ein Elektron im Wasser seine neue Bleibe in einem Atom oder Molekül einnimmt, strebt es jedoch erst einmal nach einem notdürftigen Ausgleich für seine negative Ladung, um seine elektronische Blöße zu bedecken. Zu diesem Zweck umgibt es sich mit Wassermolekülen, die positive elektrische Pole besitzen und diese zur negativen Ladung des Elektrons ausrichten. Ist das geschehen, ist das Elektron im Wasser gelöst. Nun hat ein Team um Julia Stähler, Leiterin einer Arbeitsgruppe am Fritz-Haber-Institut der Max-Planck-Gesellschaft, detaillierte Informationen über den Lösevorgang gewonnen.

Entscheidend: die Bindungsenergie des Elektrons
Die Forscher haben zum einen ermittelt, mit welcher Energie das nackte Elektron gebunden ist, unmittelbar nachdem es ins Wasser eintaucht und seine Ladung noch nicht mit den positiven Polen von Wassermolekülen abgepuffert ist. Demnach ist ein solches Elektron deutlich schwächer gebunden als selbst die äußeren Elektronen der Alkalimetalle wie Natrium oder Kalium, die wegen der niedrigen Bindungsenergie ihrer Elektronen auch schon extrem reaktiv sind. Zum anderen haben die Forscher festgestellt, dass es nur 22 Femtosekunden dauert, bis das Elektron beginnt, Wassermoleküle um sich zu versammeln – zur Erinnerung: 1 fs = 10–15 s.

Das enorme Tempo des Prozesses erklärt, warum Wissenschaftler die Bindungsenergie des Elektrons direkt nach seinem Eintauchen ins Wasser bislang nicht messen konnten. „Diese Information ist für Chemiker jedoch wichtig, wenn sie Reaktionen mit gelösten Elektronen fördern oder verhindern wollen“, erklärt Julia Stähler. Denn genau diese Energie entscheidet, ob der erste Schritt einer Reaktion mit gelösten Elektronen stattfindet oder nicht: Wenn eine Substanz ein Elektron ans Wasser abgibt, muss es die Bindungsenergie eines Elektrons mitbringen, das gerade im Wasser eintaucht.

Das Team der Physikerin hat die Erkenntnisse über den Tauchgang des Elektrons mithilfe der sogenannten zeitaufgelösten Zwei-Photonen-Photoelektronenspektroskopie (2PPE) gewonnen. Bei der Photoelektronenspektroskopie katapultiert Licht Elektronen aus ihrer atomaren Umgebung heraus. Aus der Energie des Lichts und der Bewegungsenergie des davon fliegenden Elektrons lässt sich seine Bindungsenergie bestimmen. Zwei Photonen erlauben es dabei, die Bindungsenergie in Zuständen zu messen, die Elektronen gewöhnlich nicht und wenn, dann nur mit einem Energieschubs, einnehmen. In einem solchen Zustand befindet sich ein Elektron, unmittelbar nachdem es ins Wasser eintaucht.

Ein Modell aus Eis
Um die Bindungsenergie der tauchenden Elektronen zu ermitteln, verwendet das Team um Julia Stähler ein Modell von Wasser: Eine dünne Schicht Eis, in der die Wassermoleküle aber nicht wie in gewöhnlichem Eis, sondern ähnlich wie in flüssigem Wasser angeordnet sind, nämlich amorph. Diese dünne Eisschicht erzeugen sie auf einem Kupferplättchen. Aus dem Kupferplättchen schlagen die Forscher mit einem ersten sehr kurzen Laserblitz nun zunächst ein Elektron heraus, das daraufhin in die amorphe Eisschicht eindringt. Dann jagen sie auf ihre Probe einen zweiten Laserpuls, der das Elektron auch aus der Eisschicht schleudert. Den zeitlichen Abstand zwischen den beiden Laserblitzen stellen sie gezielt mit Femtosekunden-Genauigkeit ein. Dank dieser Zeitauflösung können sie verfolgen, wie lange das Elektron in dem Zustand verweilt, in dem es noch nicht von den Wassermolekülen gelöst ist.

Auf diese Weise fand das Team zudem heraus, dass ein Elektron auch direkt – also sogar ohne den Zeitverzug von 22 Femtosekunden – im gelösten Zustand landen kann, in dem die Wassermoleküle seine Ladung ausgleichen. „Damit beantworten wir die Frage, ob sich ein Elektron im Wasser sein eigenes Potenzialloch gräbt oder in ein zumindest kleines Loch fällt, das bereits existiert.“, sagt Julia Stähler. Ein Potenzialloch entsteht, wenn die Dipole der Wassermoleküle so ausgerichtet sind, dass ihre positiven Pole das negativ geladene Elektron einhüllen. „Wenn das Elektron direkt in einem solchen Potenzialloch landen kann, muss es das natürlich schon vorher geben“, sagt die Physikerin. Würde das Elektron sein Potenzialloch erst erzeugen, drehten die Wasserdipole ihre positiven Pole erst zu ihm hin, sobald sie es wahrnehmen. Und das würde zumindest eine kleine Weile dauern. Allerdings vertieft ein Elektron das bereits vorhandene Loch, in dem es Platz gefunden hat, noch.

Julia Stähler ist überzeugt, dass sich die Erkenntnisse aus der Studie an dem Modellsystem weitgehend auf flüssiges Wasser übertragen lassen. „Der absolute Wert der Bindungsenergie kann natürlich abweichen“, sagt Julia Stähler. „Der Löseprozess dürfte in Wasser aber genauso schnell und auf dieselbe Weise stattfinden wie in unserem Modellsystem.“ Daher erforschen die Berliner Max-Planck-Forscher am amorphen Eis weiter, wie Elektronen im Wasser eintauchen. So bestimmen sie nun etwa, wie weit das Elektron ins Wasser eindringt, ehe es von den Wassermolekülen beeinflusst wird. Denn auch diese Erkenntnis gäbe Chemikern Anhaltspunkte, wie sie Reaktionen in Wasser beeinflussen können.

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Komplexes 3D-gedrucktes Objektiv auf einer optischen Faser neben den Facettenaugen einer Fliege

3D-Druck macht´s möglichOptische Linsen, fein wie ein Haar

Forscher der Universität Stuttgart haben einen Kurzpulslaser in Kombination mit optischem Fotolack benutzt, um optische Linsen herzustellen, die kaum größer sind als ein menschliches Haar.

…mehr
Biosensor

Wie reagieren lichtempfindliche Biomoleküle?Dynamik eines photoaktiven Proteins

Mit einer speziellen Hochgeschwindigkeits-Röntgenkamera hat ein internationales Forscherteam unter Beteiligung von Desy die ultraschnelle Reaktion eines Proteins auf Licht beobachtet.

…mehr
Lichtleiter

Atom- und MolekülforschungLaserpuls wird ganz von selbst kürzer und intensiver

Ultrakurze Laserpulse sind zum unverzichtbaren Werkzeug für Atom- und Molekülforschung geworden. Eine neue Technologie ermöglicht es nun, auf einfache und billige Weise Infrarot-Laserpulse zu erzeugen.

…mehr

Weiterer Beitrag zu dieser Firma

Van-der-Waals-Kraft

Physikalische ChemieVan-der-Waals-Kraft haftet besser als gedacht

Sie sorgen dafür, dass Gase unterhalb einer bestimmten Temperatur zu Flüssigkeiten kondensieren. Sie geben Klebstoff ihre Haftkraft und lassen einen Gecko kopfüber an einer Wand hängen: die Van-der-Waals-Kräfte.

…mehr
Zinkoxid

Umwandlung von LichtenergiePseudoteilchen wandern durch photoaktives Material

Einen wichtigen Schritt der Umwandlung von Licht in speicherbare Energie haben Forscher des KIT aufgeklärt: Mit Wissenschaftlern des Fritz-Haber-Instituts und der Aalto University untersuchten sie die Bildung von Polaronen in Zinkoxid.

…mehr
Anzeige

Mediadaten 2018

LABO Einkaufsführer

Produktkataloge bei LABO

Produktkataloge zum Blättern


Hier finden Sie aktuelle Blätter-Kataloge von Herstellern aus der Branche. Einfach durchblättern oder gezielt nach Stichwort suchen!

Anzeige

LABO Web-Guide 2016 als E-Paper

LABO Web-Guide 2016

Web-Guide 2016


- Stichwortregister

- Firmenscreenshots

-Interessante Webadressen aus dem Labor

Anzeige

Neue Stellenanzeigen

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

LABO bei Facebook und Twitter