Einflussmöglichkeiten auf chemische Reaktionen untersucht

Ein Elektron auf Tauchgang

Forscher des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin haben bestimmt, wie stark Elektronen gebunden sind, wenn sie von Wasser aufgenommen werden – und zwar ganz zu Anfang, sobald die negativen Ladungsträger von einem Material wie etwa einem möglichen Reaktionspartner ins Wasser abgegeben werden. Erkenntnisse, wie Elektronen in Wasser gelöst werden, erweitern die Einflussmöglichkeiten auf chemische Reaktionen.

Am Lichtkatapult: Jan-Christoph Deinert justiert den blauen Laser, mit dem Forscher des Fritz-Haber-Instituts Elektronen aus einer Kupferplatte in eine dünne, amorphe Eisschicht schleudern. Die Eisschicht dient ihnen als Modell für flüssiges Wasser. Mit ihren Experimenten untersuchen die Forscher, wie das Elektron darin gelöst wird (© Clemens Richter/Fritz-Haber-Institut).

Elektronen sind die eigentlichen Akteure in chemischen Reaktionen, weil sie dabei zwischen verschiedenen Atomen verschoben werden. Ob das passiert, hängt von ihrer Bindungsenergie an die unterschiedlichen Komponenten ab. Und bei Reaktionen in wässrigen Lösungen ist die Bindungsenergie eines Elektrons am Anfang des Prozesses, bei dem dieses gelöst wird, ein entscheidender Faktor. Ein Elektron, das losgelöst von einem Atom oder Molekül im Wasser „schwimmt“, verhält sich in etwa so wie ein Einsiedlerkrebs ohne Muschel: So wie der Krebs sich schnell eine neue Behausung sucht und dabei mit seinen Artgenossen nicht gerade zimperlich umgeht, will auch das Elektron möglichst schnell wieder bei einem Atom unterschlüpfen und drängt sich dabei in die chemischen Verbindungen, die es im Wasser gerade findet. Daher mischen solche nackten Elektronen bei zahlreichen chemischen Reaktionen mit, wenn Wasser vorhanden ist: in den chemischen Prozessen in biologischen Zellen etwa, oder bei der Entstehung des Ozonlochs und anderen Reaktionen in der Atmosphäre, die in winzigen Wassertröpfchen stattfinden.

Anzeige

Ehe ein Elektron im Wasser seine neue Bleibe in einem Atom oder Molekül einnimmt, strebt es jedoch erst einmal nach einem notdürftigen Ausgleich für seine negative Ladung, um seine elektronische Blöße zu bedecken. Zu diesem Zweck umgibt es sich mit Wassermolekülen, die positive elektrische Pole besitzen und diese zur negativen Ladung des Elektrons ausrichten. Ist das geschehen, ist das Elektron im Wasser gelöst. Nun hat ein Team um Julia Stähler, Leiterin einer Arbeitsgruppe am Fritz-Haber-Institut der Max-Planck-Gesellschaft, detaillierte Informationen über den Lösevorgang gewonnen.

Entscheidend: die Bindungsenergie des Elektrons
Die Forscher haben zum einen ermittelt, mit welcher Energie das nackte Elektron gebunden ist, unmittelbar nachdem es ins Wasser eintaucht und seine Ladung noch nicht mit den positiven Polen von Wassermolekülen abgepuffert ist. Demnach ist ein solches Elektron deutlich schwächer gebunden als selbst die äußeren Elektronen der Alkalimetalle wie Natrium oder Kalium, die wegen der niedrigen Bindungsenergie ihrer Elektronen auch schon extrem reaktiv sind. Zum anderen haben die Forscher festgestellt, dass es nur 22 Femtosekunden dauert, bis das Elektron beginnt, Wassermoleküle um sich zu versammeln – zur Erinnerung: 1 fs = 10–15 s.

Das enorme Tempo des Prozesses erklärt, warum Wissenschaftler die Bindungsenergie des Elektrons direkt nach seinem Eintauchen ins Wasser bislang nicht messen konnten. „Diese Information ist für Chemiker jedoch wichtig, wenn sie Reaktionen mit gelösten Elektronen fördern oder verhindern wollen“, erklärt Julia Stähler. Denn genau diese Energie entscheidet, ob der erste Schritt einer Reaktion mit gelösten Elektronen stattfindet oder nicht: Wenn eine Substanz ein Elektron ans Wasser abgibt, muss es die Bindungsenergie eines Elektrons mitbringen, das gerade im Wasser eintaucht.

Das Team der Physikerin hat die Erkenntnisse über den Tauchgang des Elektrons mithilfe der sogenannten zeitaufgelösten Zwei-Photonen-Photoelektronenspektroskopie (2PPE) gewonnen. Bei der Photoelektronenspektroskopie katapultiert Licht Elektronen aus ihrer atomaren Umgebung heraus. Aus der Energie des Lichts und der Bewegungsenergie des davon fliegenden Elektrons lässt sich seine Bindungsenergie bestimmen. Zwei Photonen erlauben es dabei, die Bindungsenergie in Zuständen zu messen, die Elektronen gewöhnlich nicht und wenn, dann nur mit einem Energieschubs, einnehmen. In einem solchen Zustand befindet sich ein Elektron, unmittelbar nachdem es ins Wasser eintaucht.

Ein Modell aus Eis
Um die Bindungsenergie der tauchenden Elektronen zu ermitteln, verwendet das Team um Julia Stähler ein Modell von Wasser: Eine dünne Schicht Eis, in der die Wassermoleküle aber nicht wie in gewöhnlichem Eis, sondern ähnlich wie in flüssigem Wasser angeordnet sind, nämlich amorph. Diese dünne Eisschicht erzeugen sie auf einem Kupferplättchen. Aus dem Kupferplättchen schlagen die Forscher mit einem ersten sehr kurzen Laserblitz nun zunächst ein Elektron heraus, das daraufhin in die amorphe Eisschicht eindringt. Dann jagen sie auf ihre Probe einen zweiten Laserpuls, der das Elektron auch aus der Eisschicht schleudert. Den zeitlichen Abstand zwischen den beiden Laserblitzen stellen sie gezielt mit Femtosekunden-Genauigkeit ein. Dank dieser Zeitauflösung können sie verfolgen, wie lange das Elektron in dem Zustand verweilt, in dem es noch nicht von den Wassermolekülen gelöst ist.

Auf diese Weise fand das Team zudem heraus, dass ein Elektron auch direkt – also sogar ohne den Zeitverzug von 22 Femtosekunden – im gelösten Zustand landen kann, in dem die Wassermoleküle seine Ladung ausgleichen. „Damit beantworten wir die Frage, ob sich ein Elektron im Wasser sein eigenes Potenzialloch gräbt oder in ein zumindest kleines Loch fällt, das bereits existiert.“, sagt Julia Stähler. Ein Potenzialloch entsteht, wenn die Dipole der Wassermoleküle so ausgerichtet sind, dass ihre positiven Pole das negativ geladene Elektron einhüllen. „Wenn das Elektron direkt in einem solchen Potenzialloch landen kann, muss es das natürlich schon vorher geben“, sagt die Physikerin. Würde das Elektron sein Potenzialloch erst erzeugen, drehten die Wasserdipole ihre positiven Pole erst zu ihm hin, sobald sie es wahrnehmen. Und das würde zumindest eine kleine Weile dauern. Allerdings vertieft ein Elektron das bereits vorhandene Loch, in dem es Platz gefunden hat, noch.

Julia Stähler ist überzeugt, dass sich die Erkenntnisse aus der Studie an dem Modellsystem weitgehend auf flüssiges Wasser übertragen lassen. „Der absolute Wert der Bindungsenergie kann natürlich abweichen“, sagt Julia Stähler. „Der Löseprozess dürfte in Wasser aber genauso schnell und auf dieselbe Weise stattfinden wie in unserem Modellsystem.“ Daher erforschen die Berliner Max-Planck-Forscher am amorphen Eis weiter, wie Elektronen im Wasser eintauchen. So bestimmen sie nun etwa, wie weit das Elektron ins Wasser eindringt, ehe es von den Wassermolekülen beeinflusst wird. Denn auch diese Erkenntnis gäbe Chemikern Anhaltspunkte, wie sie Reaktionen in Wasser beeinflussen können.

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...