Hochleistungsbatterien

Alternativen zu problematischem Lithium

Chemiker der TU Berlin um Prof. Dr. Peter Strasser entwickeln einen neuen Typ von Elektrodenmaterial für sichere Batterien, die auf Aluminium und Magnesium statt Lithium beruhen.

Wiederaufladbare kleine Lithium-Ionen-Batterien begegnen uns auf Schritt und Tritt: Im Handy, in Kameras, Radios und nahezu allen portablen elektrischen Geräten. Lithium ist einerseits ein sehr reaktives Material und damit gut geeignet für Batterien, da man eine hohe Spannung erzeugen kann. Andererseits liegt in dieser Eigenschaft aber auch die Gefahr: Die Batterien müssen vollkommen luftdicht abgedichtet sein, damit es nicht zu explosiven Zwischenfällen kommt.

Prof. Dr. Peter Strasser mit seinem Doktoranden Toshinari Koketsu beim Zusammenbau von Batterien (© TU Berlin/PR/Christian Kielmann).  

„Für portable Anwendungen sind Lithium-Ionen-Batterien heute noch erste Wahl“, weiß Strasser, „aber die Sicherheitsrisiken von Lithium-Ionen-Batterien bei großen Batteriespeichern, wie wir sie für die Energiewende benötigen, machen ihre langfristige Verwendung zu einer enormen Herausforderung.“

Schon seit längerem arbeiten Wissenschaftlerinnen und Wissenschaftler deshalb an Alternativen, die auf den Metallen Magnesium oder Aluminium beruhen. „Diese Metalle sind preiswerter und können sicherer an der Luft gelagert werden. Diese größere Sicherheit bezahlt man allerdings mit einer geringeren Spannung. Dafür stellen diese Ionen nicht wie Lithium nur eine, sondern zwei beziehungsweise drei positive Ladungen zur Verfügung und erlauben daher eine viel dichtere Speicherung von elektrischer Ladung - was gerade für große kompakte Batteriespeicher sehr wichtig ist“, so Peter Strasser.

Anzeige

Modifiziertes Titanoxid spielt wichtige Rolle

Das Problem: Die zwei- und dreiwertig geladenen Ionen ließen sich bisher sehr viel schlechter so in ein Wirtsmaterial (Elektrodenmaterial) einlagern, dass sie anschließend reversibel zwischen den Elektroden ausgetauscht werden können. „Meinem Mitarbeiter Dr. Toshinari Koketsu ist es jetzt gelungen, diese Ionen reversibel in eine chemisch modifizierte Form des weißen Farbpigments Titanoxid einzulagern. Das Titanoxid wurde dabei zunächst von unseren Kooperationspartnern an der Pariser Universität Sorbonne mit Fluorid-Ionen dotiert. Das bedeutet, dass Fluorid-Ionen in der Gitterstruktur des Titanoxids einen Teil der Sauerstoff-Ionen ersetzen, dabei einige der positiv geladenen Titan-Ionen ausstoßen und so eine Art ‚Loch’ oder Fehlstelle in dem Gitter produzieren. Es zeigt sich, dass diese Fehlstellen ideale Einlagerungsstellen für positiv geladene Magnesium- oder Aluminium-Ionen sind.“

In mehreren Versuchsreihen konnten die Wissenschaftler jetzt erstmalig beweisen, dass die reversible Einlagerung der Aluminium- und Magnesium-Ionen über mehrere hundert Zyklen stabil funktioniert und dabei hohe Ladungskapazitäten aufweist. „Damit konnten wir zeigen, dass Fluorid-dotierte Oxidmaterialien mit speziellen Fehlstellen tatsächlich eine grundlegend neue Batteriechemie mit Magnesium- und Aluminium-Ionen ermöglichen, die von fundamentaler wie praktischer Bedeutung sein wird“, so Peter Strasser.

Eine Technik von übermorgen: „Wir werden auch zukünftig noch verschiedene Batterietypen nutzen. Im Moment ist die Lithium-Ionen-Batterie die preiswerteste und beste Methode für viele Anwendungen. Parallel dazu arbeitet die Wissenschaft an sogenannten Lithium-Schwefel-Batterien, die auch von der Automobilindustrie mit Interesse verfolgt werden. Die Aluminium-/Magnesium-Ionen-Batterie ist eher eine Technik von übermorgen, für Anwendungen die zum Beispiel sehr auf Sicherheit fokussiert sind.“

Literatur 

[1] Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Toshinari Koketsu, Jiwei Ma, Benjamin J. Morgan, Monique Body, Christophe Legein, Walid Dachraoui,Mattia Giannini, Arnaud Demortière, Mathieu Salanne, François Dardoize, Henri Groult, Olaf J. Borkiewicz, Karena W. Chapman, Peter Strasser & Damien Dambournet; Nature Materials (2017), DOI: 10.1038/nmat4976

Anzeige

Das könnte Sie auch interessieren

Anzeige

OLEDs

Ultradünnschicht erhöht Effizienz deutlich

Wissenschaftler am Max-Planck-Institut für Polymerforschung in Mainz haben ein unerwartetes Versuchsergebnis erhalten: Sie haben eine neue Methode entdeckt, um die Kontakte in OLEDs zu verbessern. Dieser neue Ansatz führt zu einer höheren...

mehr...

Batteriematerialien

Gründung von BASF Toda America

BASF, der weltweit größte Chemiezulieferer für die Automobilindustrie, hat die Vereinbarung zur Gründung von BASF Toda America (BTA) vollzogen. Als ein weiterer Schritt entlang der BASF-Wachstumsstrategie für ihr Geschäft mit Batteriematerialien...

mehr...
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...

Optrode

Neuer Sensor

Für photometrische TitrationenAcht verschiedene Wellenlängen (470, 502, 520, 574, 590, 610, 640 and 660 nm) für einen breiten Messbereich, 100%ige Lösungsmittelresistenz dank Glasschaft und denkbar einfaches Handling – das sind die...

mehr...

Aquatrode plus

Auch mit abnehmbarem Elektrodenkabel

pH-Wert-MessungenDie Aquatrode plus mit Steckkopf U von Metrohm wurde speziell entwickelt für pH-Wert-Messungen und Titrationen in ionenarmen und schlecht gepufferten Proben, wie z.B. Oberflächenwässer oder deionisiertes Wasser.

mehr...