Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik> Atome mit Quanten-Erinnerung

Terahertz-KalorimetrieWie sich Wasser in der Umgebung von gelösten Molekülen verhält

Hat Idee des Terahertz-Kalorimeters realisiert: Martina Havenith

Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, mit der sie Veränderungen in der Energie und Struktur von Wassermolekülen in der Umgebung gelöster Moleküle erfassen können. 

…mehr

Das physikalische LaborAtome mit Quanten-Erinnerung

Aus Ordnung wird Unordnung - das gilt auch für Quantenzustände. Messungen am Atominstitut der TU Wien zeigen, dass dieser Übergang quantenphysikalisch ganz anders ablaufen kann als in unserer Alltagserfahrung.

Eiswürfel im Cocktailglas schmelzen, bis ein dauerhafter Gleichgewichtszustand erreicht ist, in dem sie verschwunden sind. Danach ist die geometrische Form der Eiswürfel völlig verloren: Die Flüssigkeit enthält keine "Erinnerung" mehr an sie, aus einem geordneten Eiskristall sind ungeordnete Wassermoleküle geworden. Bei ultrakalten Bose-Einstein-Kondensaten ist das anders: Die höchst geordneten Wolken extrem kalter Teilchen streben zwar ebenfalls einem ungeordneten Gleichgewichtszustand entgegen, doch eine "Erinnerung" an ihren ursprünglichen Zustand behalten sie erstaunlich lange. Wie sich nun zeigt, hängt dieses Phänomen bemerkenswerterweise nicht von der Temperatur ab, es scheint sich also um eine recht stabile, grundlegende Eigenschaft der Quantenphysik zu handeln.

sep
sep
sep
sep
Anzeige

Zwischenstopp auf dem Weg ins Chaos

Das physikalische Labor: Atome mit Quanten-Erinnerung

Schon im vergangenen Jahr gelang es der Forschungsgruppe rund um Prof. Jörg Schmiedmayer am Vienna Center for Quantum Science and Technology (VCQ), Atominstitut der TU Wien, den überraschenden Zwischenzustand zwischen Ordnung und Unordnung zu finden: Die Atome eines ultrakalten Bose-Einstein-Kondensats streben einem ungeordneten Gleichgewichtszustand entgegen, in dem ihre quantenphysikalischen Eigenschaften nicht mehr sichtbar sind.

Das geschieht allerdings nicht kontinuierlich, wie beim schmelzenden Eiswürfel, sondern über die Zwischenstufe eines sogenannten "präthermalisierten Zustands", in dem die Atome erstaunlich lange verharren, ohne ihren quantenphysikalischen Ursprung zu vergessen. "Teilt man die Atom-Wolke in zwei Teile und führt diese dann wieder zusammen, werden Wellen-Muster sichtbar", erklärt Jörg Schmiedmayer. "Sie sind der Beweis dafür, dass in den Atom-Wolken noch immer die Erinnerung daran vorhanden ist, aus einem quantenphysikalisch höchst geordneten Zustand hervorgegangen zu sein."

Zwischenzustand unabhängig von Temperatur

Nun gelang es dem Forschungsteam, den Übergang in diesen Zwischenzustand genauer zu untersuchen - und dieser Übergang erweist sich als bemerkenswert stabil gegenüber unterschiedlichen äußeren Bedingungen. Aus unserem Alltag sind wir das Gegenteil gewohnt: "Stellen wir uns vor, ein Zimmer ist mit Luft gefüllt und im Nebenzimmer herrscht Vakuum", sagt Max Kuhnert vom Atominstitut der TU Wien. "Wenn wir die Tür dazwischen öffnen, strebt dieses System in ein Gleichgewicht, bis die Luftmoleküle gleichmäßig zwischen den beiden Räumen verteilt sind. Dieser Übergang wird allerdings stark von äußeren Bedingungen wie Druck und Temperatur bestimmt." Je höher der Druck und je größer die Temperatur, umso leichter geht die Information über den Anfangszustand verloren, etwa über die ungleiche Verteilung der Luft-Moleküle oder auch über die Struktur schmelzender Eiswürfel.

"Der präthermalisierte Zustand unserer Atomwolken wird hingegen ganz unabhängig von Druck und Temperatur erreicht", sagt Max Kuhnert. Die jetzt in Physical Review Letters veröffentlichen Experimente zeigen, dass dieser Zwischenzustand durch eine neue Längenskala charakterisiert wird. Diese sogenannte Korrelationslänge gibt an, auf welche Längenskala man die Atom-Wolken betrachten muss, um seine Quanten-Eigenschaften noch erkennen zu können.

"Diese Korrelationslänge ergibt sich emergent aus der Dichte des ursprünglichen Quantengases. Sichtbar wird sie aber erst in der Dynamik des Übergangs vom geordneten Zustand in den präthermalisierten Zustand", sagt Jörg Schmiedmayer. "Dass die charakteristische Korrelationslänge nicht von der Anfangstemperatur abhängt, ist ein starkes, neues Indiz dafür, dass es sich bei dem präthermalisierten Zustand um ein wesentliche Eigenschaft der Quantenphysik mit weitreichender Bedeutung handelt", glaubt Max Kuhnert.

Ein tieferes Verständnis dieses Zustandes soll nicht nur ultrakalte Bose-Einstein-Kondensate erklären, sondern auch neues Licht auf die Vorgänge im frühen Universum werfen oder dabei helfen, die noch immer nicht völlig verstandenen Eigenschaften des Quark-Gluon-Plasmas in großen Teilchenbeschleunigern zu verstehen.

Das VCQ http://vcq.quantum.at ist eine gemeinsame Initiative der TU Wien, der Universität Wien und der Österreichischen Akademie der Wissenschaften. Prof. Jörg Schmiedmayer ist als Professor der TU Wien Teil dieser universitätsübergreifenden Einrichtung. Allgemein zugängliche Version der Originalpublikation unter http://arxiv.org/abs/1211.5323 Version in Pyhsical Review Letters.

Rückfragehinweise:

Dipl.-Ing. Maximilian Kuhnert
Atominstitut
Technische Universität Wien
Stadionallee 2
A-1020 Wien
maximilian.kuhnert@tuwien.ac.at

Prof. Jörg Schmiedmayer
Atominstitut
Technische Universität Wien
Stadionallee 2
A-1020 Wien
hannes-joerg.schmiedmayer@tuwien.ac.at

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Ultraschnelles Elektronenmikroskop: Quantenzustand freier Elektronen bestimmt

Ultraschnelles ElektronenmikroskopQuantenzustand freier Elektronen bestimmt

Forschern der Universität Göttingen ist es gelungen, Elektronenblitze zu formen und zu messen, die kürzer als ein einzelner Lichtzyklus sind.

…mehr
Forschungsförderung durch ERC-Grant: Vom Quasiteilchen zur hochsensiblen Sensorik

Forschungsförderung durch ERC-GrantVom Quasiteilchen zur hochsensiblen Sensorik

Im Rahmen des Projekts Quem-Chem sollen Wechselwirkungen zwischen Licht und Materie untersucht werden, um mit den dadurch gewonnenen Erkenntnissen u.a. hochempfindliche Sensoren entwickeln zu können. Im Mittelpunkt der jetzt mit einem ERC-Grant geförderten Arbeiten stehen Molekül-Plasmon-Hybrid-Systeme.

…mehr
Physiker testen mit einem Interferometer, ob die Standard-Quantenmechanik korrekt oder eine komplexere Theorie notwendig ist.

QuantenmechanikAuf der Suche nach Abweichungen von der Standardtheorie

Auf der Suche nach Abweichungen von der Standardtheorie der Quantenmechanik testeten Physiker, ob die Quantenmechanik ein noch raffinierteres mathematisches Regelwerk benötigt. 

…mehr
schwarze Diamanten

QuantenspeicherQuantenphysikalisch gekoppelte Diamanten

Atomare Fehler in Diamanten können als Quantenspeicher verwendet werden. An der TU Wien gelang es nun erstmals, Defekte unterschiedlicher Diamanten quantenphysikalisch zu koppeln. Diamanten mit winzigen Fehlern könnten für die Zukunft der Quantentechnologie eine große Rolle spielen. 

…mehr
Kryostat

Neuartige QuantenlichtquelleLichtteilchen im Doppelpack

Die Quantenphysik ist unter anderem deshalb so schwierig zu verstehen, weil sich die entsprechende Forschung meist in einem Mikrokosmos aus einzelnen Atomen, Elektronen und Photonen abspielt – also nicht greifbar für das menschliche Auge.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung