Jetzt erstmals vermessen und kartiert

Blauer Phosphor – Existenz bestätigt

Vor einiger Zeit noch reine Theorie: Die Existenz von „Blauem“ Phosphor. Jetzt konnten Wissenschaftler diese Modifikation untersuchen und bestätigen. 

Die STM-Aufnahme zeigt Blauen Phosphor auf einem Gold-Substrat. Blau eingezeichnet sind die errechneten Positionen der leicht erhöhten P-Atome, weiß eingezeichnet die der tiefer liegenden. Im STM-Bild zeigen sich Gruppen aus sechs erhöhten P-Atomen als Dreiecke. © HZB

Nun konnte ein Forscherteam vom Helmholtz Zentrum Berlin (HZB) erstmals Proben aus blauem Phosphor am Synchrotron BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente. Die Ergebnisse sind nun in Nano Letters publiziert.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren roter, violetter, weißer und schwarzer Phosphor. Während weißer Phosphor giftig und brandgefährlich ist, ist schwarzer Phosphor dagegen besonders stabil. Doch nun ist eine weitere Modifikation identifiziert: 2014 hat ein Team der Michigan State University, USA, durch Modellierungen herausgefunden, dass auch „Blauer Phosphor“ stabil sein sollte. In dieser Modifikation vernetzen sich die Phosphor-Atome ähnlich wie beim Graphen zu einer Art Bienenwabenstruktur, die jedoch nicht perfekt flach ist, sondern regelmäßige „Buckel“ hat. Modellrechnungen zeigen, dass diese Phosphor-Modifikation kein Halbleiter mit einer schmalen Energielücke ist, sondern eine verhältnismäßig große Bandlücke von 2 Elektronenvolt aufweisen sollte. Das wäre etwa der siebenfache Wert des schwarzen Phosphors im Volumen und hochinteressant für optoelektronische Anwendungen.

Anzeige

Blauer Phosphor am Synchrotron untersucht
2016 gelang es, Blauen Phosphor durch Aufdampfen auf einer Goldoberfläche abzuscheiden. Doch erst jetzt gibt es die Gewissheit, dass es sich dabei tatsächlich um Blauen Phosphor handelt. Dafür hat ein Team vom HZB um Evangelos Golias an BESSY II erstmals die elektronische Bandstruktur solcher Proben vermessen. Sie konnten die Energieverteilung der äußeren gebundenen Elektronen im Valenzband mit der Methode der winkelaufgelösten Photoemissionsspektroskopie abtasten und damit eine untere Grenze für den Wert der Bandlücke von blauem Phosphor angeben.

Bandstruktur durch Gold-Substrat beeinflusst
Dabei fanden sie heraus, dass die P-Atome sich nicht ganz unabhängig vom Gold-Substrat anordnen, sondern versuchen, sich an die Abstände zwischen den Gold-Atomen anzupassen. Dies verzerrt das gewellte Wabengitter, was sich wiederum auf die Energieverteilung der Elektronen auswirkt. So stimmt die Oberkante des Valenzbands, wo die Bandlücke beginnt, mit der theoretischen Vorhersage überein, ist jedoch etwas verschoben.

Ausblick: optoelektronische Anwendungen
„Bisher hat man vor allem schwarzem Phosphor benutzt, um davon einzelne Atomlagen abzutragen“, erklärt Oliver Rader, der die HZB-Abteilung „Materialien für grüne Spintronik“ leitet. „Diese einzelnen Atomlagen weisen ebenfalls eine große Bandlücke auf, besitzen aber nicht die Bienenwabenstruktur des blauen Phosphors und können vor allem nicht direkt auf einem Substrat hergestellt werden. Unsere Ergebnisse offenbaren nicht nur die Materialeigenschaften dieser neuartigen zweidimensionalen Modifikation des Phosphors, sondern zeigen auch, wie das Substrat das Verhalten der Elektronen im blauen Phosphor beeinflusst. Und das ist ein wichtiger Faktor für jegliche optoelektronische Anwendung.“

Publikation
E. Golias, M. Krivenkov, A. Varykhalov, J. Sanchez-Barriga & O. Rader: Band renormalization of blue phosphorus on Au(111), in Nano Letters (2018); DOI:10.1021/acs.nanolett.8b01305

Anzeige

Das könnte Sie auch interessieren

Anzeige

Grundlagenforschung

Stabile Biradikale erzeugt

Die Welt der Chemie ist um eine Attraktion reicher: Forscher der Universität Würzburg haben Moleküle so stark gedreht, dass deren Doppelbindungen komplett zerstört wurden. Das Ergebnis: außergewöhnlich stabile Biradikale.

mehr...

Neue VDI-Publikation

CRISPR/Cas & Co

Biotechnologische Durchbrüche wie die CRISPR/ Cas-Methode verheißen völlig neuartige und vielversprechende Anwendungen in Medizin, Landwirtschaft und Industrie. Der VDI gibt in seiner Publikation „CRISPR/Cas & Co – Neue Biotech-Werkzeuge“ einen...

mehr...
Anzeige

The Power of Multiomics

Erfahren Sie in unserem White Paper „Unlocking the Power of Multiomics“ wie die Verknüpfung von Lipidphenotyp und Genotyp geholfen hat Herzkreislauferkrankungen besser vorherzusagen.

mehr...
Anzeige
Anzeige

Highlight der Woche

Perfekte GCMS-Ergebnisse dank Shimadzu NX-Technologien
Shimadzu erweitert die Singlequad- und Triplequad-GCMS um den Gaschromatographen GC-2030. Damit werden Analysen präziser, Wartungsarbeiten vereinfacht und die Geräteauslastung maximiert.

Zum Highlight der Woche...

EU-Projekt PECSYS

Solare Wasserstofferzeugung

Das HZB koordiniert ein EU-Projekt, das innerhalb von vier Jahren eine wirtschaftlich umsetzbare Technologie für die solare Wasserstofferzeugung entwickeln soll. Die Solarenergie wird dadurch in chemische Energie umgewandelt und im Brennstoff...

mehr...