Mörtel mit Bakterienfilm-Beimischung

Wasserdicht dank Biofilm

Feuchtigkeit kann Mörtel auf Dauer zerstören – etwa wenn sich durch Frost Risse bilden. Ein Team von Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität München (TUM) hat einen ungewöhnlichen Weg gefunden, um Mörtel vor Feuchtigkeit zu schützen: Schon beim Anrühren der Masse fügen sie einen Biofilm hinzu, eine weiche, feuchte Substanz, die von Bakterien gebildet wird.

Die Oberflächenstruktur des mit Biofilm angemischten Mörtels (links) erzeugt einen Lotuseffekt: Wassertropfen haben deutlich weniger Kontakt zur Oberfläche als auf unbehandeltem Mörtel (rechts). (Grafik: Stefan Grumbein / TUM)

Mit Ziegeln, Mörtel und Beton hat Prof. Oliver Lieleg für gewöhnlich wenig zu tun. Als Professor für Biomechanik am Zentralinstitut für Medizintechnik (IMETUM) und der Fakultät Maschinenwesen beschäftigt er sich hauptsächlich mit Hydrogelen aus Biopolymeren, etwas flapsig könnte man sagen: mit Schleim, der von Lebewesen gebildet wird.

Dazu zählen zum Beispiel bakterielle Biofilme wie Zahnbelag oder die schleimige, schwarze Schicht in Abflussrohren. „Biofilme gelten im Allgemeinen als schädlich und störend, das ist etwas, was man eher loswerden will“, sagt Oliver Lieleg. „Für mich war es deshalb reizvoll, sie für eine sinnvolle Anwendung nutzbar zu machen.“

Inspiration im Gespräch

Im Gespräch mit einem Kollegen an der TUM kam Lieleg die Idee, Biofilme zu nutzen, um die Eigenschaften von Baumaterial zu verändern. Prof. Christian Große ist Inhaber des Lehrstuhls für Zerstörungsfreie Werkstoffprüfung und forscht unter Anderem zu selbstheilendem Beton, der Risse selbständig schließt. Einer Variante dieses Betons sind Bakterien beigemischt, die durch eintretende Feuchtigkeit aktiviert werden und die Risse durch kalkhaltige Stoffwechselprodukte wieder schließen.

Anzeige

Für sein eigenes Projekt nahm sich Lieleg anstelle von Beton Mörtel vor. Statt Risse im Nachhinein zu flicken, will er verhindern, dass Feuchtigkeit überhaupt erst eindringt und für Probleme sorgt, indem sich etwa Schimmel bildet oder gefrierendes Wasser kleine Spalten weiter aufsprengt. Dafür macht er sich zunutze, dass einige Filme, die von Bakterien gebildet werden, stark wasserabweisend sind. Im Fachmagazin „Advanced Materials“ schildern Lieleg und seine Kolleginnen und Kollegen, wie man einen sogenannten Hybridmörtel herstellen kann, der besonders resistent gegen Feuchtigkeit ist.

Bodenbakterium als Filmlieferant

Wichtigste Zutat des neuen Materials ist der Biofilm eines Bakteriums namens Bacillus subtilis. „Bacillus subtilis lebt normalerweise in Böden und ist sehr weit verbreitet“, erläutert Oliver Lieleg. „Wir haben für unsere Experimente einen einfachen Laborstamm genutzt, der sich gut vermehren lässt, viel Biomasse bildet und völlig ungefährlich ist.“ Im Labor züchtete das Team um Lieleg den Bakterienfilm auf Standard-Nährböden. Den feuchten Biofilm mischten sie dann unter das Mörtelpulver.

Auf dem fertigen Hybridmörtel blieb Wasser deutlich weniger haften, als auf unbehandeltem. Um diese Eigenschaft einer Oberfläche zu messen, bestimmen Wissenschaftler den Kontaktwinkel, den ein Wassertropfen zur Oberfläche hat. Je steiler der Winkel, desto kugelförmiger ist ein Tropfen und desto weniger sickert er in das jeweilige Material ein. Während dieser Winkel bei Tropfen auf unbehandeltem Mörtel 30° oder weniger beträgt, ist er bei Tropfen auf dem Hybridmörtel gut dreimal so steil. Einen ähnlichen Kontaktwinkel haben Wassertropfen auf Polytetrafluorethylen, besser bekannt unter dem Markennamen Teflon.

Nanostrukturen im Mörtel

Der Grund für die Eigenschaften des Hybridmörtels ist nur mit dem Elektronen-Mikroskop sichtbar: Überall an der Oberfläche befinden sich winzige kristalline Stacheln. Dadurch kommt es zum sogenannten Lotuseffekt, der beispielsweise auch auf den Blättern der namensgebenden Pflanze auftritt. Die kleinen gleichmäßigen Strukturen auf der Oberfläche sorgen dafür, dass nur ein kleiner Teil der Oberfläche eines Wassertropfens die eigentliche Oberfläche des Blattes berührt. Dadurch wird die Oberflächenspannung des Tropfens stärker als die Kräfte, die ihn am Blatt haften lassen, er wird kugelförmig und perlt ab. Ein Schnitt durch den Hybridmörtel zeigt, dass die kristallinen Stacheln auch innerhalb des Mörtels gleichmäßig verteilt sind. Dadurch werden Kapillarkräfte verringert, die normalerweise dafür sorgen, dass Wasser in dem Mörtel emporsteigt, wenn ein Teil in Flüssigkeit steht.

Ähnliche Stacheln kommen zwar auch auf unbehandeltem Mörtel vor, sie sind dort aber länger und nur an einzelnen Stellen zu finden. Ein Lotuseffekt kann nicht entstehen. Erst der beigemischte Biofilm, nehmen die Wissenschaftler an, stimuliert überall im Volumen des Hybridmaterials ein Kristallwachstum, das zudem besonders gleichmäßig ist.

Um herauszufinden, ob der Hybridmörtel widerstandsfähig genug ist, um tatsächlich im Bau verwendet zu werden, wird er derzeit am Lehrstuhl von Christian Große geprüft. „Wenn der Mörtel tatsächlich geeignet ist, sehe ich wenig Probleme für Firmen, ihn im großen Stil herzustellen“, sagt Oliver Lieleg. Sowohl der verwendete Bakterienstamm als auch die Nährböden seien etabliert und relativ kostengünstig. „In unseren Experimenten haben wir außerdem herausgefunden, dass man auch gefriergetrockneten Biofilm nutzen kann. In Pulverform lässt sich das biologische Material sehr viel leichter lagern, transportieren und dosieren.“ In Zukunft wollen die Wissenschaftlerinnen und Wissenschaftler prüfen, ob sich auch Beton mithilfe des Biofilms gegen Wasser schützen lässt.

Originalpublikation:

S. Grumbein, D. Minev, M. Tallawi, K. Boettcher, F. Prade, F. Pfeiffer, C.U. Große and O. Lieleg, Hydrophobic Properties of Biofilm-Enriched Hybrid Mortar, Advanced Materials, DOI: 10.1002/adma.201602123 (2016).

Kontakt:

Prof. Dr. Oliver Lieleg
Professur für Biomechanik
Technische Universität München
Fakultät für Maschinenwesen und Zentralinstitut für Medizintechnik
E-Mail: oliver.lieleg@TUM.de

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Von der Miesmuschel lernen

Biopolymere aus dem Muschelfuß

Von der Miesmuschel kann sich die Chemieindustrie einiges abschauen. Nicht nur, dass ihr Perlmutt und die reißfesten Fäden, mit denen sie sich am Meeresboden festhält, außergewöhnliche Qualitäten besitzen. Wie sie diese Materialien erzeugt, könnte...

mehr...

Florfliegenseide

Innovative Hochleistungs-Biofaser

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch...

mehr...

Federn als Rohstoff

Neue Biomaterialien aus Proteinen

Biomaterialien aus nachwachsenden Rohstoffen bilden seit fast 25 Jahren einen Schwerpunkt am Fraunhofer-Institut für Angewandte Polymerforschung IAP in Potsdam-Golm. Bisher lag der Fokus auf pflanzlichen Rohstoffen wie Cellulose, Stärke oder Lignin....

mehr...