Lichtinduzierte Supraleitung

Fußbälle ohne Widerstand

Hinweise auf einen lichtinduzierten verlustfreien Stromtransport in Alkali-Fulleriden helfen bei der Suche nach supraleitenden Materialien für die Praxis.

Intensive Laserblitze nehmen einer Kristalllage des Alkali-Fullerids K3C60, das fußballähnliche Moleküle aus 60 Kohlenstoffatomen enthält, möglicherweise schon bei Temperaturen von -170 °C den elektrischen Widerstand. (© J.M. Harms / MPI für Struktur und Dynamik der Materie)

Supraleiter bleiben einstweilen in Nischenanwendungen verbannt. Da selbst die besten dieser Materialien erst bei -70 °C ihren elektrischen Widerstand verlieren, werden sie nur in Magneten für Kernspintomographen oder Fusionsanlagen sowie in Teilchenbeschleunigern eingesetzt. Physiker des Max-Planck-Instituts für Struktur und Dynamik der Materie am Center for Free-Electron Laser Science (CFEL) in Hamburg haben nun Hinweise gefunden, dass Fullerene, deren bekannteste Moleküle Fußbällen ähneln, zumindest kurzzeitig bei hohen Temperaturen widerstandslos Strom leiten könnten, wenn die molekularen Substanzen mit infrarotem Laserlicht angeregt werden.

Bereits 2013 war es Forschern des Instituts gelungen, eine bestimmte Keramik mit infraroten Laserpulsen für Bruchteile einer Sekunde sogar bei Raumtemperatur supraleitend zu machen. Weil Fullerene einen relativ einfachen chemischen Aufbau haben, hoffen die Wissenschaftler, das Phänomen der lichtinduzierten, kurzzeitigen Supraleitung bei hohen Temperaturen durch die neuen Experimente besser verstehen zu können. Solche Einsichten könnten helfen, ein Material zu entwickeln, das Strom auch ohne optische Anregung bei Raumtemperatur verlustfrei leitet.

Hoffnungsträger für die Supraleitung bei Raumtemperatur sind die sogenannten Kuprate, das sind Kupferoxid enthaltende Keramiken. Denn sie verlieren ihren elektrischen Widerstand schon unterhalb vergleichsweise hoher Temperaturen; ab -120 °C leitet einer ihrer Vertreter Strom verlustfrei. Physiker nennen sie daher Hochtemperatur-Supraleiter.

Anzeige

Einen Weg zu Materialien, die sogar schon bei Zimmertemperatur ihren elektrischen Widerstand verlieren, möchten Andrea Cavalleri, Direktor am Max-Planck-Institut für Struktur und Dynamik der Materie, und seine Mitarbeiter weisen. Ihre Beobachtung, dass mit Licht angeregte Fullerene möglicherweise schon bei -170 °C supraleitend werden, bringt sie dabei einen Schritt weiter. Diese Erkenntnis könnte nämlich zu einem umfassenderen Verständnis der lichtinduzierten Supraleitung beitragen, weil sich diese für Fullerene leichter theoretisch beschreiben lässt als für Kuprate. Eine vollständige Erklärung des Effekts könnte wiederum helfen, das Phänomen der Hochtemperatur-Supraleitung besser zu verstehen und ein Rezept für einen künstlichen Supraleiter zusammenzustellen, der bei Raumtemperatur Strom verlustfrei leitet.

Eine Strukturänderung macht den Weg für Elektronen frei
Dass ein Material bei Zimmertemperatur ohne Verluste Strom leiten kann, hatten Forscher aus Cavalleris Gruppe 2013 an einem Kuprat festgestellt. Zumindest für wenige Billionstel Sekunden wurde das Material ganz ohne Kühlung supraleitend, nachdem sie es mit einem infraroten Laserpuls angeregt hatten. Ein Jahr später legten die Hamburger eine mögliche Erklärung des Effektes vor.

Sie beobachteten, dass sich die Positionen von Atomen im Kristallgitter nach der Anregung mit dem Lichtblitz verschieben. Diese Verschiebung bleibt ebenso bestehen wie der supraleitende Zustand des Materials. Die lichtinduzierte Änderung der Struktur macht, grob gesprochen, den Weg für Elektronen frei, so dass sie sich verlustfrei durch die Keramik bewegen. Allerdings hängt die Erklärung stark von der sehr spezifischen Kristallstruktur der Kuprate ab. Aus damaliger Sicht konnte es sich somit um ein Phänomen handeln, das nur bei den unkonventionellen Hochtemperatur-Supraleitern auftritt.

Das Team um Cavalleri fragte sich daher, ob Licht auch den elektrischen Widerstand von herkömmlichen Supraleitern brechen kann, deren Physik wesentlich besser verstanden ist. Tatsächlich wurden Forscher um Daniele Nicoletti und Matteo Mitrano vom Max-Planck-Institut für Struktur und Dynamik der Materie jetzt fündig, und zwar bei einem Stoff, der sich von Kupraten stark unterscheidet: das Fullerid K3C60, ein Metall, das sich aus sogenannten Buckminster-Fullerenen zusammensetzt. Diese Hohlmoleküle bestehen aus 60 Kohlenstoff-Atomen, die sich zur Form eines Fußballs verbinden: eine Kugel aus zusammengesetzten Fünf- und Sechsecken. Negativ geladene Fullerene kleben durch zwischengelagerte positive Kalium-Ionen, die sozusagen wie Kitt wirken, zu einem Festkörper zusammen. Dieses sogenannte Alkali-Fullerid hat die Eigenschaften eines supraleitenden Metalls mit einer Sprungtemperatur von rund -250 °C. Mit dieser Temperatur geben Physiker an, wo die Supraleitung sprunghaft einsetzt.

Eine der höchsten Sprungtemperaturen außerhalb der Kuprate
Die Forscher sendeten nun bei verschiedenen Temperaturen, zwischen der Sprungtemperatur und Raumtemperatur, infrarote Lichtpulse von nur wenigen milliardstel Mikrosekunden Dauer auf das Alkali-Fullerid. Sie stellten die Frequenz der Lichtwelle so ein, dass sie die Fullerene zu Vibrationen anregten. Dabei schwingen die Kohlenstoffatome so, dass sich die Fünfecke des Fußballs ausdehnen und zusammenziehen. Diese Änderung der Struktur, so die Hoffnung, könnte ähnlich wie beim Kuprat auch bei hohen Temperaturen eine kurzzeitige Supraleitung erzeugen.

Um dies zu testen, sendeten die Forscher gleichzeitig zum Infrarot-Puls einen zweiten Lichtpuls auf die Probe, allerdings mit einer Frequenz im Terahertzbereich. Wie stark dieser Puls reflektiert wird, verrät den Forschern die Leitfähigkeit des Materials, also wie leicht sich Elektronen durch das Alkali-Fullerid bewegen. Dabei zeigte sich eine sehr hohe Leitfähigkeit. „Wir haben Supraleitung möglicherweise bis hinauf zu Temperaturen von mindestens -170 °C induziert“, sagt Daniele Nicoletti. Somit würde das Hamburger Experiment eine der höchsten je beobachteten Sprungtemperaturen außerhalb der Materialklasse der Kuprate zeigen.

„Wir planen nun weitere Experimente, die uns zu einem tieferen Verständnis der Vorgänge führen sollen“, so Nicoletti. Als Nächstes wollen sie während der Anregung durch das Infrarotlicht die Kristallstruktur analysieren. Dies soll ähnlich wie zuvor beim Kuprat zu einer Erklärung des Phänomens beitragen. Dann wollen die Forscher wesentlich länger andauernde Lichtblitze auf das Material senden. „Das ist zwar technisch anspruchsvoll, könnte die Lebensdauer der Supraleitung aber so weit verlängern, dass es für Anwendungen interessant wird“, schließt Nicoletti.

Originalpublikation:
M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch und A. Cavalleri: Possible light-induced superconductivity in K3C60 at high temperature. Nature Advance Online Publication, 8. Februar 2016; DOI: 10.1038/nature16522.

Ansprechpartner:
Dr. Daniele Nicoletti
Max-Planck-Institut für Struktur und Dynamik der Materie, Hamburg
E-Mail: daniele.nicoletti@mpsd.mpg.de

Prof. Dr. Andrea Cavalleri
Max-Planck-Institut für Struktur und Dynamik der Materie, Hamburg
E-Mail: andrea.cavalleri@mpsd.mpg.de

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

The Power of Multiomics

Erfahren Sie in unserem White Paper „Unlocking the Power of Multiomics“ wie die Verknüpfung von Lipidphenotyp und Genotyp geholfen hat Herzkreislauferkrankungen besser vorherzusagen.

mehr...
Anzeige
Anzeige

Highlight der Woche

Perfekte GCMS-Ergebnisse dank Shimadzu NX-Technologien
Shimadzu erweitert die Singlequad- und Triplequad-GCMS um den Gaschromatographen GC-2030. Damit werden Analysen präziser, Wartungsarbeiten vereinfacht und die Geräteauslastung maximiert.

Zum Highlight der Woche...