Kombination aus Rastertunnel- und Rasterkraftmikroskop

Schnappschüsse von Molekülen bei Raumtemperatur

Forschern der Universität Regensburg ist es in Kooperation mit Kollegen aus Barcelona erstmals gelungen, organische Moleküle bei Raumtemperatur mit atomarer Auflösung darzustellen. Für die „Schnappschüsse“ von den Molekülen nutzten sie eine Kombination aus Rastertunnel- und Rasterkraftmikroskop.

Dynamische Kraft- und Tunnelmikroskopie-Abbildung von PTCDA-Molekülen auf Silber. Die annähernd senkrecht angeordneten Moleküle erscheinen heller als die annähernd waagerechten. Dies ermöglicht Rückschlüsse auf ihren Ladungszustand. (Foto: Universität Regensburg)

Das neue Verfahren ermöglicht unter anderem eine genauere Untersuchung des Ablaufs von chemischen Reaktionen. Die Regensburger Entwicklung wurde vor wenigen Tagen in der Fachzeitschrift „Physical Review Letters“ veröffentlicht (DOI: 10.1103/PhysRevLett.115.066101).

In den letzten Jahren wurden Aufsehen erregende Abbildungen organischer Moleküle mit Hilfe von Tieftemperatur-Rasterkraftmikroskopen gemacht. Mit einem Rasterkraftmikroskop kann man die interne Struktur einzelner Moleküle untersuchen und abbilden. Allerdings sind diese hochpräzisen Messungen sehr komplex und benötigen normalerweise Temperaturen nahe am absoluten Nullpunkt.

Eine Arbeitsgruppe vom Lehrstuhl für Experimentalphysik der Universität Regensburg (Prof. Dr. Franz J. Gießibl) hat es nun in Zusammenarbeit mit Forschern des Instituts für Materialwissenschaften an der Autonomen Universität Barcelona erstmals geschafft, diese Messungen bei Raumtemperatur durchzuführen. Mit einem neuen Verfahren konnten sie spezielle organische Moleküle (PTCDA–Perylentetracarbonsäuredianhydrid) mit weit weniger Aufwand und bei Raumtemperaturen atomar aufgelöst abbilden. PTCDA-Moleküle werden für die Entwicklung organischer Halbleiter-Bauelemente verwendet.

Anzeige

Mit der vom internationalen Forscherteam benutzten Kombination aus Rastertunnel- und Rasterkraftmikroskop konnte dabei nicht allein die Kräfte der chemischen Bindungen bestimmt, sondern auch die elektronische Ladungsdichte um die Moleküle untersucht werden. Solche Messungen sind die Basis für die Analyse von Donator-Akzeptor-Paaren, bei denen ein Teilchen von einem Reaktionspartner (Donator) auf den anderen (Akzeptor) übertragen wird. Donator-Akzeptor-Paare sind wiederum die Grundlage für die organische Photovoltaik.

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige
Anzeige
Anzeige

LABO Ausstellerporträts

Am 21. Mai 2019 startet in Hannover die Labvolution. Die LABO-April-Ausgabe mit dem großen Messeschwerpunkt erscheint am 26. April 2019 und liegt auch auf der Messe aus.
Zusätzlich zu Ihrer klassischen Anzeigenwerbung können Sie ein Ausstellerporträt buchen und auf Ihren Labvolution-Messestand einladen.

Zum Highlight der Woche...
Anzeige

12 MP IDS-Kameras für Labor & Medizin

Perfektes Ergebnis selbst bei schwachen Lichtverhältnissen: IDS integriert den hochauflösenden 12 MP Sensor IMX226 von SONY in die nur 29 x 29 x 29 mm großen uEye CP-Kameras. Die neuen Modelle mit GigE- bzw. USB3-Schnittstelle bieten den bewährten Vision-Standard und sind ab Mai 2019 verfügbar.

Zum Highlight der Woche...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite