Labo Online - Analytic, Labortechnik, Life Sciences
Home> Wirtschaft + Wissenschaft> Archiv>

Alternative zu Kunststoff? Stärkstes Biomaterial der Welt schlägt Stahl und Spinnenseide

Alternative zu Kunststoff?Stärkstes Biomaterial der Welt schlägt Stahl und Spinnenseide

An DESYs Röntgenlichtquelle PETRA III hat ein Forscherteam unter schwedischer Führung das stärkste Biomaterial hergestellt, das je produziert worden ist. Die biologisch abbaubaren künstlichen Zellulosefasern sind stärker als Stahl und sogar als die noch stärkere Spinnenseide, die gemeinhin als das stärkste biologische Material gilt. 

sep
sep
sep
sep
Rasterelektronenmikroskop-Aufnahme der fertigen Fasern.

Das ultrastarke Material besteht aus Zellulose-Nanofasern (CNF), den „Grundbausteinen“ von Holz und anderen Pflanzen. Mit Hilfe einer neuen Produktionsmethode haben die Forscher um Daniel Söderberg von der Königlichen Technischen Hochschule (KTH) Stockholm erfolgreich die besonderen mechanischen Eigenschaften der Nanofasern auf ein makroskopisches Material übertragen, das sich außerdem durch sein geringes Gewicht auszeichnet und beispielsweise als umweltfreundliche Kunststoffalternative in Autos, für Möbel und in Flugzeugen Anwendung finden könnte. „Unser neues Material hat auch Potenzial für die Biomedizin, da Zellulose vom Körper nicht abgestoßen wird“, erläutert Söderberg.

Anzeige

Orientierung durch hydrodynamische Fokussierung
Die Wissenschaftler nutzen kommerziell angebotene Zellulose-Nanofasern, die nur etwa zwei bis fünf Nanometer dünn und bis zu 700 Nanometer lang sind (ein Nanometer ist ein millionstel Millimeter). Die Nanofasern werden in Wasser durch einen dünnen, nur einen Millimeter breiten Kanal in einem Stahlblock geschickt. Dieser Kanal besitzt zwei Paare seitlicher Zuflüsse, durch die entionisertes Wasser sowie Wasser mit niedrigem pH-Wert einfließen. Dadurch wird der Strom der Nanofasern zusammengepresst und beschleunigt.

Diese sogenannte hydrodynamische Fokussierung sorgt dafür, dass sich die Nanofasern in der richtigen Orientierung ausrichten und sich von selbst zu einem eng gepackten Faden zusammenlagern. Die Nanofasern haften dabei ganz ohne Klebstoff oder irgendeine andere Zutat durch sogenannte supramolekulare Kräfte zusammen, die zwischen den Nanofasern wirken, beispielsweise elektrostatische und Van-der-Waals-Kräfte.

Im hellen Röntgenstrahl von PETRA III konnten die Forscher den Prozess im Detail verfolgen und optimieren. „Das Röntgenlicht erlaubt uns, die detaillierte Struktur des Fadens zu analysieren, während er entsteht. Das schließt sowohl die Materialstruktur ein als auch die hierarchische Ordnung in den superstarken Fasern“, erläutert Ko-Autor Stephan Roth, Leiter der Mikro- und Nanofokus-Messstation P03, an der die Fäden gesponnen wurden. „Wir haben Fäden von bis zu 15 Mikrometern Dicke und mehreren Metern Länge hergestellt“, berichtet Roth. Ein Mikrometer ist ein tausendstel Millimeter. Die Fäden lassen sich den Forschern zufolge auch in größerer Dicke fertigen.

Stärker als Metalle und Fiberglas
Die Untersuchung zeigte eine Biegesteifigkeit des Materials von 86 Gigapascal und eine Zugfestigkeit von 1,57 Gigapascal. „Die von uns hergestellten biobasierten Nanozellulosefäden sind achtmal steifer und einige Male zugfester als die Abseilfäden aus natürlicher Spinnenseide“, betont Söderberg. „Wenn man ein biobasiertes Material sucht, gibt es nichts wirklich Vergleichbares. Es ist auch stärker als Stahl und alle anderen Metalle oder Legierungen sowie als Fiberglas und die meisten anderen synthetischen Materialien.“

Die künstlich hergestellten Zellulosefäden lassen sich etwa zu einem Stoff für verschiedenste Anwendungen weben. Die Forscher schätzen, dass die Produktionskosten des neuen Materials dabei mit denen besonders fester synthetischer Stoffe konkurrieren können. „Aus dem neuen Material lassen sich im Prinzip biologisch abbaubare Bauteile entwickeln“, ergänzt Roth.

Die in der Untersuchung beschriebene neue Methode ahmt die Fähigkeit der Natur nach, Zellulose-Nanofasern zu nahezu perfekten makroskopischen Anordnungen zu arrangieren, wie etwa in Holz. Damit eröffnet sich die Möglichkeit, ein Material aus Nanofasern zu entwickeln, das sich für größere Werkstücke nutzen lässt, und dabei die Zugfestigkeit und die mechanische Belastbarkeit der Nanofasern zu erhalten.

„Wir können jetzt die überragende Leistung aus dem Nanokosmos in den Makrokosmos übertragen“, betont Söderberg. „Ermöglicht hat diese Entdeckung dadurch, dass wir gelernt haben, die fundamentalen Schlüsselparameter für die perfekte Nanostrukturierung wie beispielsweise Partikelgröße, Wechselwirkungen, Ausrichtung, Ausbreitung, Netzwerkbildung und Gruppierung zu verstehen und zu kontrollieren.“ Der Prozess kann den Wissenschaftlern zufolge auch benutzt werden, um beispielsweise die Gruppierung von Kohlenstoff-Nanoröhrchen oder anderen Nanofasern zu steuern.

An der Arbeit waren die KTH Stockholm, die Stanford-Universität, das schwedische Forschungsinstitut RISE Bioeconomy, die Universität von Michigan und DESY beteiligt.

DESY zählt zu den weltweit führenden Beschleunigerzentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.


Originalveröffentlichung:
Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers; Nitesh Mittal, Farhan Ansari, Krishne Gowda.V, Christophe Brouzet, Pan Chen, Per Tomas Larsson, Stephan V. Roth, Fredrik Lundell, Lars Wågberg, Nicholas A. Kotov, and L. Daniel Söderberg; „ACS Nano”, 2018; DOI: 10.1021/acsnano.8b0108

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge in dieser Rubrik

Menschliches Fettgewebe: Wenn viele kleine Fettzellen wachsen, ist das physiologisch gesund. (Bild: Johanna Poetsch/iStock)

PhysiologieFettzelltyp unterdrückt Wachstum neuer Fettzellen

Forschende der ETH Zürich und der EPFL haben einen neuen Fettzelltyp entdeckt, der das Wachstum neuer Fettzellen unterdrückt.

…mehr
Mikroelektroden-Arrays auf Gelatine: Ein Team um Prof. Wolfrum hat die Sensoren auf Gummi-Süßigkeiten gedruckt. (Bild: N. Adly / TUM)

Spannung an Zellen messbarMikroelektroden-Arrays auf Gelatine

Mit Mikroelektroden können elektrische Signale direkt am Gehirn oder Herz gemessen werden. Für solche Anwendungen werden jedoch weiche Materialien benötigt, auf denen die Elektroden bislang nur mit großem Aufwand angebracht werden konnten. Einem Forschungsteam ist es jetzt gelungen, diese direkt auf weiche Oberflächen zu drucken.

…mehr
Schematische Darstellung des temperaturgesteuerten Superkontinuums. (Bild: Leibniz-IPHT)

Potenzial für die BildgebungTemperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Forschende des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) fanden heraus, wie sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

…mehr

Von der Fliege bis zum MenschenSchlüsselmolekül im Alterungsprozess

Jede Zelle und jeder Organismus altern früher oder später. Doch warum eigentlich? Wissenschaftler des Deutschen Krebsforschungszentrums in Heidelberg konnten zeigen, dass ein Protein eine wichtige Rolle im Alterungsprozess spielt.

…mehr
Medikamente wirken oftmals weit über die Grenzen unseres Körpers hinaus. (Bild: UFZ/André Künzelmann)

Mikroschadstoffe in GewässernGutachten zur Einführung einer Arzneimittelabgabe

Arzneimittelrückstände aus Haushalten, Krankenhäusern und der Landwirtschaft belasten unsere Gewässer. Eine nationale Mikroschadstoffstrategie soll die Probleme künftig lösen. Dabei stellt sich die Frage der Finanzierung. Eine Möglichkeit wäre, eine Arzneimittelabgabe für gewässerbelastende Wirkstoffe einzuführen. Wie das Helmholtz-Zentrum für Umweltforschung (UFZ) jetzt bekannt gibt, haben UFZ-Forscher in einem wissenschaftlichen Gutachten für das Umweltbundesamt (UBA) das Instrument einer Arzneimittelabgabe näher beleuchtet.

…mehr
Anzeige
Anzeige

Mediadaten 2018

LABO Einkaufsführer

Produktkataloge bei LABO

Produktkataloge zum Blättern


Hier finden Sie aktuelle Blätter-Kataloge von Herstellern aus der Branche. Einfach durchblättern oder gezielt nach Stichwort suchen!

Anzeige

LABO Web-Guide 2016 als E-Paper

LABO Web-Guide 2016

Web-Guide 2016


- Stichwortregister

- Firmenscreenshots

-Interessante Webadressen aus dem Labor

Anzeige

Neue Stellenanzeigen

Nichts mehr verpassen!

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

LABO bei Facebook und Twitter